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INTRODUCTION

The objective of this book is to guide the reader toward a mastery of working radiation
protection problems at the technologist level. It is not a textbook that focuses on establishing
an understanding of the physics behind the problems that are presented. Therefore, it is
intended primarily for an audience of radiation protection technologists who have a practical
understanding of the principles and practice of radiation protection, or health physicists that
are starting their refresher study of solving radiation protection problems for certification or
other purposes. It is intended to be useful as one of many tools for preparation for the
National Registration of Radiation Protection Technologists (NRRPT) registration exam.

The following discussion will first outline the learning philosophy that was applied in
designing the content and format of the book, then the basic approach that has been adopted
to guide users toward mastery of solving radiation protection problems, ending with the
organization of the book.

Most books written with objectives similar to that just stated for this book are organized
around specific physics concepts and are ordered more or less from the simple to the more
complex physical principles. Unfortunately, this requires the reader to be constantly shifting
from one mathematical level to another, and for the reader who has more confidence in
his/her ability to understand the radiation protection principle involved than in the
mathematical manipulations required to solve the problem, this introduces unnecessary
distractions into the learning process.

The learning philosophy that serves as the cornerstone of this book involves five steps:
o offer the problem solving tools
e show how to use the tools by a simple, but complete, walk through of examples

e cover all eventualities in exercise problems, maximizing the utility of each important
equation by solving it for all of its variables as unknowns and by solving for variables for
which existing variables are surrogates and for which multiple stage solutions are
required.

s test comprehension
e provide opportunities for feedback from the process in areas of weakness

The approach that has been used to develop the organization of the book is based on the
concept that to pursue mastery of the material one must:

e build the necessary mathematical skills to work the radiation protection problems
« present the specific mathematical techniques necessary to solve the relevant equations

e reinforce the techniques by walking through a few simple example mathematical
problems

« master the techniques by working radiation protection problems
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* master radiation protection problem solving by working more problems with less
guidance

To apply these concepts and to achieve these objectives, the book has been organized as
follows. The first chapter discusses the technique that is recommended to be followed to
solve any radiation protection problem, no matter what kind or at what mathematical level.
All example problems are offered in the format of this technique and, where fully developed
answers are given to exercise problems, they are given in this format. Where only the
answers are given to exercise problems, it is recommended that the reader use the same
approach.

Beyond the problem solving technique chapter, the book is organized into parts. Each part
contains radiation protection problems that apply only one level of mathematical
manipulation. The parts advance from the use of Algebra, to Logarithms and Exponentials,
to Statistics, and finally Trigonometry. Each part begins with a mathematics chapter that
describes the mathematical tools required to solve the radiation protection problems
presented in the subsequent chapters of that part.

Each part is divided into Chapters that apply the mathematical techniques of that part to
specific types of radiation protection problems. For instance, the first chapter in the
Logarithms and Exponentials part is “Radioactivity and Radioactive Decay”. The number of
radiation protection chapters within each part is variable, being determined by the number
needed to cover the radiation protection concepts important to achieving the stated objective
of the book.

The text of each chapter contains example problems with full solutions, developed around the
recommended solution technique presented in Chapter 1. At the end of the book, there are
multiple appendices that give information that otherwise would have to be drawn from other
sources before problems could be solved. For instance, one appendix offers commonly used
conversions factors. Another gives formulas and equations that are used throughout the book
in problem solving.

Based on this organizational format and content, it is recommended that no matter what
intent motivates the reader to use the book, even if it is to learn how to solve a specific type
of radiation protection problem that is contained in a specific chapter in the book, he/she first
consult the solution technique chapter, then the appropriate mathematics chapter before going
to the specific problem area of interest. Once the tools and skills necessary to successfully
solve a particular type of radiation protection problem are at hand, then one can enter the
system at the level most appropriate to the existing level of mastery.



CHAPTER 1
TECHNIQUE FOR SOLVING RADIATION PROTECTION PROBLEMS

This chapter discusses the technique that is recommended to be followed to solve any
radiation protection problem, no matter what kind, or at what mathematical level. All
example problems are offered in this format and, where fully developed answers are given to
exercise problems, they are also given in this format. Following this brief introduction to the
topic, each component of the problem solving technique is presented and discussed in detail.
Then the various components are combined into an integrated process that can always be
followed. Application of the integrated process and presentation format is then demonstrated
for an example problem,

Any activity for which consistency is important to success, like problem solving, making a
good golf shot or delivering a good presentation; proper planning, preparation and execution
are of paramount importance. As the golfing situation would indicate, no one way is the only
way, but each individual should have a consistent and preferred way. The problem solving
technique discussed in this chapter is such a way. It has been proven to work over the years,
and will serve as a model if individual problem solvers elect to adopt a different technique.
The important thing is to select as early in this book as possible a technique, probably
including the same basic steps as the recommended one, to apply to every problem, so that it
can be engrained in the problem solver’s approach before many of the more complex and
difficult problem types occur.

The technique includes the following steps, in order:

e read the problem and select the appropriate mathematical relationship among the
variables involved and isolate the unknown by treating each side of the equation
identically, as described in the appropriate mathematics chapter

¢ simplify the equation
¢ validate the problem setup using unit analysis

e plug in the values for known quantities, as given in the problem, established
constants/conversion factors and results of side-bar calculations

¢ quantify the unknown

e do areality check of the solution.

Read the Problem, Select the Proper Equation, and Isolate the Unknown

Step number one of the process is often an iterative process, especially early in the process of
a problem solver becoming comfortable with word-type problems. The common scenario is
that the problem will be read without the reader assimilating the information being given in
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the context of the appropriate variables and variable relationships. The minimum goal of the
first few readings of the problem should be to identify what kind of problem is being
presented. Hopefully, by the end of this book the reader will be convinced that there are only
about two dozen types of problems that typically dominate radiation protection practice.
Furthermore, not many more than the two dozen equations must be mastered before these
types of problems can be easily characterized, understood and solved.

So, after the first reading or so, it should be recognized that the problem, for example,
involves converting current in a radiation detector to a radiation exposure. Knowing the
relationship between these variables, and the other information that is crucial to the solution
of such a problem, one can read the problem with a much greater understanding when
looking for the specific information that will enable the appropriate equation to be solved.

Any variable in the relationship identified early in this step of the process may be the
unknown variable. In some cases it may be the obvious one, like the exposure rate in the
hypothetical problem just discussed. More likely, some other variable will be the unknown,
like the pressure of the gas in the detector, or the volume of the detector, In each case, the
same first steps are required. The details of this step in the process will differ, depending on
the type of equation and the variable that is the unknown. As was discussed in the
introduction to this book, the problems are organized in such a way that the reader can
assume that the approach to this step falls within the purview of the mathematics chapter that
starts the part. Therefore, if the radiation protection problem appears within the Algebra
part, an algebraic approach to isolating the unknown variable will be appropriate, and those
techniques will have been discussed in the first chapter in that part.

Simplify the Equation

In many cases, especially in the more complex problem types, when the unknown variable is
isolated, the resulting equation is messy, in that it may contain the same variable in several
different places, or different mathematical operators may be strewn throughout the equation.
To enhance the possibility that the equation makes physical sense, it is a good policy to
simplify the equation. Then it should be obvious that two variables are directly proportional
or inversely proportional, and the unit (or dimensional) analysis step in the process will be
more understandable and more straightforward.

Validate the Problem Setup

It is of little value to proceed with solving the problem numerically if the problem is set up
incorrectly. A quick way to establish some certainty that the setup is correct is to analyze the
units, as they reside in the simplified equation and see if the units on both sides of the
equation are the same, or can be converted to be the same, and if the answer comes out in the
unit it should. This step emphasizes the importance of carrying along the units of each
variable when solving radiation protection problems. Simply having numbers for each
variable is not enough to ensure a correct solution of radiation protection problems. We use
many units that, when used incorrectly, can result in meaningless solutions, or, at best,
solutions that are many orders of magnitude in error.
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There are two situations where this step takes on a slightly different approach. The first of
these is when empirical formulas are involved. In many of these cases in radiation
protection, relationships have only been experimentally observed to describe the right
relationship between several variables, without regard to their units. In these cases, unit
analysis is not useful.

The second case is where multiplicative models are involved. In these cases, the units drive
the whole process and the numbers are dragged along with the units, instead of the usual
dragging the units along with the numbers. In other words, the whole process of solving
these types of problems involves unit analysis, in contrast to having unit analysis only one
late step in of the process.

An example of this step can be demonstrated using the following radiation protection
problem:

A worker is exposed to a radiation field of 0.5 mR/hr exposure rate (ER). The exposure lasts
for 4 hours exposure time. (ET)

What is the worker’s total exposure (TE)?

Step 1: Isolate the unknown variable
ER ¢« ET=TE

Step 2: Simplify the equation

(not needed since the equation is already in a form to solve for the unknown called
for in the problem)

Step 3: Validate the problem setup
[mR/hr] o [hr] = [mR]

In this case the answer is in the desired unit and with the cancellation of the [hr] and [1/hr],
the units on both sides of the equation are the same, indicating that no conversions, etc. are
required. This would not be the case if the exposure rate was in terms of [R/hr] and the
desired answer for (TE) was in [mR].

Plug in Values for Known Quantities, Constants and Conversion Factors

Now with some certainty in the problem setup established, one is left to the actual solving of
the problem for the answer. For the example problem given in the discussion of step three of
the process, this step looks like:

Step 4: 0.5 [mR/hr] e 4 [hr] = 2 [mR]
The use of constants or conversion factors is not needed for the example problem being

discussed, because all of the variables are either the unknown or are given values in the
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problem. However, as pointed out before, if the exposure rate were given in terms of [R/hr]
and the (TE) needed to be stated in terms of [mR] then this step would involve the conversion
of the [R/hr] to [mR/hr]. This, of course would be accomplished by multiplying the [R/hr]
value by 1000. The need to do this operation as part of the solution would have been
discovered in Step 3, because the units would not have come out in the unit analysis. So, the
new Step 3, for the case where (ER) is given in [R/hr] goes as follows:

[R/hr] @ [mR/R] e [hr] =[mR]

Again all of the conditions for validity of the problem setup are met. Without the conversion
factor from [R] to [mR] this is not so.

The characteristic that differentiates a constant or conversion factor from a variable in the
equation is that neither constants nor conversion factors are usually given with the problem.

It is expected that these values are either known or can be retrieved from a reference. The
constants and conversion factors most commonly required to solve problems in this book are
given in the appendices, as described in the introduction to the book. The second
characteristic, primarily of conversion factors, is that they may not even appear as variables in
the equation. For example, in the example problem where exposure rate is in terms of [R/hr],
there is no indication in the equation identified in step 1 of a conversion being needed. One
must recognize that [R] and [mR] are different and that the difference is a factor of 1000
mR/R. This reinforces the need for the dimensional (or unit) analysis in Step 3.

Quantify the Unknown

Now that all of the needed information for solving the equation is at hand, it remains only to
“turn the crank.” In the original example problem this step is:

Step 5: TE =2mR

Conduct Reality Check

One should not believe the result of every calculation on the basis of faith. Sometimes values
are entered incorrectly into computers or calculators, sometimes operations, other than those
intended, are executed unknowingly, etc. It is up to the problem solver to identify the more
gross of these types of errors. One way is to conduct a reality check. This means to
explicitly ask yourself if the answer makes sense. If your intuition tells you that the answer
should be a few mR, and your answer indicates hundreds of mR, perhaps it would be prudent
to look through the solution process to either validate the answer or identify where the error
occurred.

Other methods available to be used in reality checks are:

e independent order of magnitude estimate

e rule of thumb estimate
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e graphic representation estimate

¢ use of nomographic data.

An example problem that illustrates the point is:
A point source of Cs-137 gives 0.33 R/hr (ER;) per Ci at 1 meter (D1).

What is the exposure rate (ER;) at 5 meters?

Step 1: Isolate the unknown variable:

ER,/ER; [R/br + R/hr] = D, /D, % [m? / m?]

(ERy/ER;) #ER, = (D;*/D,%) » ER,

ER, = (D,*/D,%) » ER,
Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

[R/hr] = [m?] » [R/hr] / [m’]
Step 4: Plug in known quantities:

ER, = (1% ¢ 0.33)/5
Step 5: Solve for unknown:

ER; =0.013 R/hr
Step 6: Conduct reality check:
In doing a reality check of this answer, one would probably look at this exposure rate at 5
meters compared with the exposure rate at 1 meter, to make sure that the 5 meter rate is
lower. Sometimes, like when the distance is doubled, the math can be done in your head and
even the numerical value of the answer can be validated. In this case maybe this is not
possible, but if the 5 meter exposure rate is MORE than the 1 meter rate, we know something
is wrong; perhaps the 1 and 2 subscripts were exchanged on one side of the equation or the

other. (It is interesting to note that such a mistake would not be picked up by the dimensional
analysis since both the denominator and the numerator have the same units.
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Where the distances in such a problem are much different, often the units of the exposure
rates will need to be addressed to make the numerical values more understandable and useful.
For instance, 1/1000 of an R/hr is more useful when using an instrument if it is expressed in
mR/hr. In such cases formal conversion of units is necessary. Casual unit conversion often
leads to disastrous results, especially if done in the field.

As discussed earlier, it is this problem solving technique that is recommended to be applied
to all problems in this book. The problems have been set up in this way to try to lead by
example. Perhaps you can begin to see how this approach is designed to catch mistakes
before the solution gets out of the problem solver’s hands. Further confidence in its ability to
keep our mistakes to a minimum and to ourselves, as much as possible, will develop from its
use on the problems that follow in the subsequent chapters.
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CHAPTER 2
ALGEBRA

Most of the mathematics used to solve radiation protection problems is covered under the
general area called Algebra. Algebra deals with the manipulation of real numbers. To a
radiation protection specialist, the most important subset of manipulations is the solving of
algebraic equations with unknowns. This section provides a brief summary of algebraic laws
and manipulating algebraic equations.

Algebraic Equations

The algebraic equation is the most important concept used in solving mathematical problems.
An equation is a statement asserting the equality of two expressions that are separated into
left and right sides and joined by an equal sign. For example, 5+ 7 =12. An equation can
also be written with one or more variables, or unknowns. The equation x +7 =12 is an
equality only when the variable x = 5. The value 5 is the solution of this equation. The
numbers 7 and 12 are constants in the equation. For the equation x + y =12, both x and y are
variables and there is an infinite number of solutions or combinations for x and y, e.g., x =1,
y=11;x=5.5,y=6.5;x=-5,y= 17, et cetera. The end product of algebra is solving
mathematical equations.

In radiation protection, the concept of equal physical quantities is encountered routinely. An
equation is merely the statement of this equality. For example, the dose equivalent (H) is
equal to the product of absorbed dose (D), a quality factor (QF), and a distribution factor (n).
In algebraic terms, H =D e QF e n. This equation becomes interesting as a problem to be
solved when one of the expressions, such as dose equivalent, is an unknown.

Solving Algebraic Equations

One step in solving a radiation protection problem is to express the known and unknown
quantities in terms of an algebraic equation. Then, this equation can be simplified and
solved. To solve an algebraic equation, a three-step process is used. Here we should note
how these three steps fit into the six-step technique we are recommending for setup, solution
and verification of a problem. Note that this process deals with equations with a single
unknown, Equations with multiple unknowns are discussed later, in Solving Systems of
Equations.

Step 1: Isolate the unknowns, or variables, on one side of the equation and the constants on
the other side of the equation.

Step 2: Simplify the equation to the form x = C, where x is the unknown and C'is a
constant. C is then the solution to the unknown.
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Step 3: Verify the solution by putting the solution for x into the original equation to check
to see if the equality is correct.

For example, solve 4x + 5 + 2x = 29

Step 1: TIsolate the unknowns, or variables, on one side of the equation and the constants on
the other side of the equation.

4x + 5 + 2x =29 is the same as 4x + 2x + 5 =29. (This is the cumulative property
of addition, which states that you can add numbers in any order you want). By
subtracting 5 from each side of the equation, the expressions become: 4x + 2x =24,

Step 2:  Simplify the equation to the form x = C, where x is the unknown and Cis a
constant. ( is then the solution to the unknown.

4x + 2x = 24. Simplifying the left side of the equation yields 6x = 24. By dividing
each side by 6, the equation becomes x = 4.

Step 3:  Verify the solution by putting the solution for x into the original equation to check
to see if the equality is correct.

To verify, 4 (4) +5+2 (4)=29. 16+5+8=29 v

Two important concepts about the above example: first, when you isolate the variable and
simplify the expression, you must perform the same operation on both sides of the equations.
If you subtract a number from the left side of the equation, you must subtract the same
number from the right side of the equation. If you multiply the left side of the equation by a
number, you must multiply the right side by the same number. By manipulating both sides of
the equation the same way, you keep the two sides equal. For multiplicative model use, it
should also be mentioned that multiplication by 1 could be done as many times as required by
a specific problem. Also it should be mentioned that many times it may not appear that a
quantity is equal to 1, like 24 hours per day, 35 eV per ion pair, etc.

Secondly, there is a set of laws that govern some manipulations of the expressions. An

example is the cumulative property of addition, illustrated above. These laws, or properties,
a summarized below:
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Algebraic Laws
Commutative Law of Additiona+b=56+a
Commutative Law of Multiplication a(b) = b(a)
Associative Law of Additiona+(b+c)=(@a+b)+c

Associative Law of Multiplication a(bc) = (ab)c

Distributive Law a(b + ¢) =ab + ac

For a practical example of solving an algebraic equation with one unknown, let’s return to
our expression for dose equivalent. As we said before, the dose equivalent (H) is equal to the
product of absorbed dose (D), a quality factor (QF), and a distribution factor (n). In algebraic
terms, H =D o QF o n. Now, let’s determine what absorbed dose (D) of alpha radiation to
the lungs would yield a dose equivalent of 5 rem. The quality factor (QF) for alpha radiation
is 20 rem per rad and the distribution factor (n) is 1. The solution is:

Step 1: Isolate the unknowns, or variables, on one side of the equation and the constants on
the other side of the equation.

The equation, in symbolic terms, is H=D e QF e n. The problem tells us the
values of H, QF, and n. So, 5 rem =D 20 rem/rad ® 1. To isolate the unknown,
D, on the right side of the equation, divide both sides by 20 rem/rad. Then, the
expression is:

Srem

—————=Drad
20 rem/rad

Step 2:  Simplify the equation to the form x = C, where x is the unknown and Cis a
constant. C is then the solution to the unknown.

0.25rad=D

Step 3:  Verify the solution by putting the solution for x into the original equation to check
to see if the equality is correct.

5 rem = 0.25 rad ® 20 rem/rad e 1. This equation reduces to 5 rem = 5 remv’.
Note that in this practical example, the constants and variables had units associated with
them. It is important to keep the units with the constant or variable and make sure the units

cancel out. In the example above, the product of the units rad and rem per rad equaled rem,
since the unit rad canceled out, i.e., the unit rad was in the numerator and denominator of the
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expression. Later chapters with discuss manipulating units in more detail, as well as review
the units rem and rad.

Solving Systems of Equations

To solve algebraic equations for unknowns, the number of unknowns must be equal to or less
than the number of equations you have to work with. When you have two unknowns, you
must have at least two equations with that unknown. When you have two or more equations
with unknowns, you have a system of equations. The example below illustrates a system of
equations.

5x +2y=-19
2x+ty=4

To solve the system of equations, you need to follow these steps:

Step 1: Reduce the system to an expression with one unknown. You do this by solving one
of the equations for one of the variables.

Step 2:  Substitute the solution for the one variable into the other equation. This substitution
should give you one equation with one variable.

Step 3:  Solve the single equation for the single unknown using the method described in
Solving Algebraic Equations, above.

Step 4: Substitute the solution from Step 3 into either of the two equations and solve for the
other variable using the method described in Solving Algebraic Equations, above.

Step 5:  Verify the solution by putting the solution for the unknowns into both original
equations to check to see if the equalities are correct.

In our example above:

5x +2y=-19
2x+y=4

Step 1: Reduce the system to an expression with one unknown. You do this by solving one
of the equations for one of the variables.

Subtracting 2x from each side of the second equation yields y = 4 - 2x.

Step 2:  Substitute the solution for the one variable into the other equation. This substitution
should give you one equation with one variable.
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In the first equation, we substitute 4 - 2x for y, or 5x + 2(4 - 2x) =-19. This
equation is the same as 5x + 8 - 4x =-19 when we multiply the value 2 through the
parentheses. This is the same as 5x - 4x + 8 =-19.

Step 3:  Solve the single equation for the single unknown using the method described in
Solving Algebraic Equations, above.

First, we simplify the expression to 1x + 8 =-19. Then, we subtract 8 from both
sides to get 1x = -27, or x =-27. To check, we have 5 (-27)+ 2[4 - 2(-27)] =-19.
135+ 2[4 -(-54)] =-19. -135+2 (58)=-19. -135+116=-19. -19 = -19v

Step 4: Substitute the solution from Step 3 into either of the two equations and solve for the
other variable using the method described in Solving Algebraic Equations, above.

Substituting -27 for x in the second equation, we get 2 (27)+y=4. -54+y=4. If
we add 54 to each side, we get y = 58. Checking the equation, we get 2 (-27) + 58 =
4, -54+58=4. 4=4v

Step 5:  Verify the solution by putting the solution for the unknowns into both original
equations to check to see if the equalities are correct.

Checking in the first equation, 5 (-27) -+ 2 (58) =-19. -135+116 = -19.-19=-19v.
Checking the second equation, we get 2 (-27) + 58 =4. -54+58=4. 4= 4v,

If your system has more than two equations, then you repeat Step 1, continually reducing
your system until you can isolate a single unknown.

Polynomials

Most of the equations that you will deal with in solving radiation protection problems and the
equations illustrated above are linear equations. In linear equations, the variable is not raised
to a power. A polynomial is an equation where a variable is raised to a power.

A quadratic equation is an equation containing the second power (square) of an unknown but
no higher power. The equation 2x? - 32 = 0 is a quadratic equation. A quadratic equation has

two roots, both of which satisfy the equation.

Solving Quadratic Equations

There are different techniques used to solve quadratic equations, based on the form of the
equation. The only technique discussed here is solving a pure quadratic using the square root
method. This method is the only method you should need when solving radiation protection
problems. There are four steps in solving pure quadratic equations by taking the square root.

Step 1: Isolate the x* term on one side of the equation.
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Step 2:  Simplify the expression to the form x> = C.

Step 3: Take the square root of both sides of the equation.

Step 4:  Check the roots.

Using our example above, 2x° - 32 = 0:

Step 1: Isolate the x* term on one side of the equation.
Add 32 to both sides of the equation, 2x* = 32.

Step 2:  Simplify the expression to the form x* = C.
Divide both sides of the equation by 2, x* = 16.

Step 3. Take the square root of both sides of the equation.
The square root of x is x. The square root of 16 is +4 and -4.

Step 4: Check the roots.

2(4)%-32=0. 2(16)-32=0. 32-32=0. 0=0v
2(-4)%-32=0. 2(16)-32=0. 32-32=0, 0=0v

Note that there are two solutions. Both +4 and -4 squared equals 16. However, when solving
physical problems, only one solution may make sense, i.e., negative values may not make
sense from some quantities. In these cases, you must perform a sanity check on the solution
to determine the correct sign of the answer.
Generally, when dealing with square roots, the answers come out to whole numbers in math
books only. You may need a calculator to estimate the value of a square root. For example,
if we change our equation to be x* - 32 = 0, then the solution is:
Step 1: Isolate the x> term on one side of the equation.

Add 32 to both sides of the equation, x* = 32.
Step 2:  Simplify the expression to the form x* = C.

The equation is already simplified, x* = 32.
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Step 3: Take the square root of both sides of the equation.

The square root of x? is x. The square root of 32 is +6.656842... and -6.656842....
These results are from a calculator (the calculator provided only the positive result).

Step 4: Check the roots.

(6.656842)2-32=0. 32-32=0. 0=0v
(-6.656842)%-32=0. 32-32=0. 0=0Y

Graphical Representation of Equations

It may be useful to plot an equation on a graph to determine solutions to a problem. Linear
equations result in straight lines when plotted on a graph, while polynomials are represented
by curves. The graph of an equation with two variables is the set of all points whose
coordinates satisfy the equation.

In Chapter 4, we will review that the fractional amount of monoecnergetic electron energy
incident on a target that is converted to Bremsstrahlung x-rays, F, is given by the following
equation:

F=35x10%eZeE

7 is the atomic number of the target element and E is the energy of the monoenergetic
electrons. If the target is aluminum, atomic number of 13, the equation is:

F=35x10%e13 e E, or F=0.00455¢E

The following exhibit gives values for F for given values of E for aluminum, copper (Z =29),
and lead (Z = 82):
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Exhibit 2-1 below presents a graph of the equation.
Exhibit 2-1.
Bremsstrahlung Energy

12 Bremsstrahlung Energy, keV

10 +

—~—F-Al |
6 ~g-PB.Cu |
—~F-Pb

0 50 100 150 200 250 300 350
Incident Energy, keV

Linear equations have the form y = mx + b. The constant “m” is the slope of the line and the
constant “b” is the y-intercept - the point the line crosses the y-axis. In the example above,
the slope is Z ¢ 3.5 x 10 and the y-intercept is 0. From Exhibit 2-1, it can be seen that the
higher the Z, the greater the slope of the line.

Power Functions

Mathematical expressions for exponential growth or decay have many applications in
radiation protection. Many of these applications are expressed as a power of e, the base of
natural logarithms. These applications are discussed in Part 2 of this book. However, other
applications, including the attenuation of electromagnetic radiation, deal with powers of 2
and 10. The section below discusses the power functions of 2 and 10.

A power function is expressed as follows:
y=x

For the presentation here, we will limit x to the values of 2 or 10, but the function is defined
for all non-zero values of x. The example below illustrates a classic example of exponential
growth.
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One day, a child is given a dollar and puts it in her piggy bank. In each subsequent day, the
child puts in twice as much money as she did the day before. So, on the next day (Day 1),
she puts in 2 dollars, on Day 2 she puts in 4 dollars, on Day 3 she puts in 8 dollars, and so on.
How much money must she put in the bank on the tenth day? The twentieth day?
To solve the example, we use the power function. In this example, x 1s 2. When you set n to
the number of days after the child was given the dollar, then y is the number of dollars she
must put in her piggy-back on that day.
In Day 10:

y = 2! which is $1,024.
In Day 20:

y = 2% which is $1,048,576

As we can see from the numbers above, there is a rapid increase in the values of y.
Exhibit 2-2 illustrates the exponential growth in our example.

Exhibit 2-2.
Power of 2
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It can be seen from the figure above that for graphs capturing exponential growth, details can
be lost because of the wide range of values on the y-axis. To see the detail in Exhibit 2-2
from Day 1 through 15, you could break the graph into two parts, one illustrating the growth
from Day 1 through Day 15 and the other the growth from Day 15 through Day 20. A more
common way to capture the detail in the graph would be to change the y-axis scale to
logarithmic. With a logarithmic scale, values of 10 are evenly spaced up the y-axis (1, 10,
100, 1000, 10000, and so on). Exhibit 2-3 presents the same function as Exhibit 2-2,
however the y-axis is a logarithmic scale. Since the x-axis is still linear, this plot is called a
semi-log plot. If both axes were logarithmic scales, then the plot would be a log-log plot. As
can be seen from the plot, the sharp upwards curved plot turns into a straight line in a semi-
log plot.

A more appropriate example of the power function as it relates to radiation protection is
exponential decay. In Chapter 4, we will discuss half-value layers (HVL) and tenth-value
layers (TVL), which are the thickness of a shield required to reduce an exposure rate to one-
half or one-tenth its original value. The reduction in the exposure rate can be expressed as a

power function of either 2 (when talking about HVLs) or 10 (when talking about TVLs).
The example below illustrates the application.

Exhibit 2-3.
Power of 2, Semi-Log Plot
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Three inches of a particular shield reduces the dose rate from a point source of cesium-137
by one-half (i.e., the HVL for the shield for Cs-137 is three inches). By what factor would
the exposure rate be reduced if 10 inches of shielding were applied?

1 HVL = 3 inches.

10 inches/3 inches per HVL = 3.33 HVLs in 10 inches of shielding.

y=2"%=0.10.

Therefore, the exposure rate would be reduced to one-tenth its original level by adding 3.33
HVLs, or 10 inches, of shielding. For this example, 10 inches is the TVL for the shield,

since the dose rate was reduced by a factor of 10. Note that the exponential term in the
power function is negative, representing an exponential decay.

Exhibit 2-4 shows the plot of dose rate from a point source of Cs-137, as a fraction of the
original, versus the number of HVLs. Exhibit 2-5 shows the same plot in semi-log form.
Again, the semi-log plot shows a straight-line plot.

Exhibit 2-4.
Dose Rate With Increasing Shielding

0.6
05
03

0.2

Dose Rate Fraction

0.1

0 1 2 3 4 5 6 7 8 9 10 11
Half-Value Layers

2.11



Dose Rate Fraction
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Exhibit 2-5.
Dose Rate Decrease, Semi-Log Plot
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CHAPTER 3
PARTICULATE RANGE BEHAVIOR

An important component of becoming competent in solving range/energy equations is that of
dispelling the idea that all range/energy problems are the same; that is to say, given a type of
radiation and an energy, what is the range? In this chapter it will be demonstrated that there
are 5 or 6 ways that this type of problem can come up, only one of which is the given a type
of radiation and energy, what is the range? The several ways will be illustrated in the
example problems in this chapter, and the demonstration will begin in the context of alpha
particles.

Alpha Particles

All of the alpha range problems presented in this chapter are doable through the use of
algebra, which was summarized in the previous chapter. However, before we get to the
solving of problems, perhaps a brief discussion of the physics of alpha interactions might be
useful.

Alpha particles are emitted from heavy radioactive nuclei monoenergetically and exhibit
range behavior. That is, all alpha particles emitted with the same energy will travel about the
same distance in a medium.

Alpha particles are made up of two protons and two neutrons and, therefore have a mass
number of 4 and a charge of +2. The large mass, relative to surrounding electrons, and the
associated relatively slow velocity, in addition to the strong attractive force of the alpha
particle for surrounding electrons, make the alpha interaction with matter one of the alpha
causing ion pairs along its track and eventually becoming neutralized by capturing electrons.
If we plot the number of alphas along a track versus the absorber thickness, a curve like that
shown in Exhibit 3-1 results. Where the number of alphas goes to zero is the distance
referred to as the “range”. It is this quantity that is the focus of problems in this chapter.

Because each ion pair created by the passage of the alpha particle requires the same amount
of energy (about 35 eV), it is observed that the more initial energy given the alpha particle,

the longer the range. The question before us, then, is what is the mathematical relationship

between the range and the energy of alpha particles?

For air as the absorbing medium, the empirical relationships are:

Ra[cm] = 0.56E for E<4 MeV Equation 3-1a

Ra[cm] = 1.24E - 2.62 for 4<E<8 MeV Equation 3-1b
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Exhibit 3-1.

Alpha Range
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where,

R, = the range of the alpha in air
E =the energy of the alpha [MeV]

It should be noticed that both of the above equations are of the form of a straight line, y = mx
+ b. Therefore, they can be plotted on linear graph paper, as they are seen in Exhibit 3-2 to
yield joined straight lines which are useful in solving alpha particle range/energy problems
where the precision available from purely mathematical approaches is not necessary. An
even cruder method of estimating the range of an alpha with energy below 4 MeV is by the

rule of thumb derived from the indication in Equation 3-1a that the range in [cm] is
approximately one half the alpha particle energy in [MeV].

Taking the process one step further, we need to address the fact that many times we are not
interested in the range of the alpha in air, but in some other material. For these situations, the
range in any substance is given by:

Rn, [mg/em®] = {(0.56) (An™”) ® R, [cm]} Equation 3-2
where,
Rm = the range of the alpha in the medium

Ay, = the atomic mass number of the medium

R, = the range of the alpha in air
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Exhibit 3-2.
Alpha Range vs. Energy
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The calculation of effective atomic mass number is done through the relationship:
A= (1A 1+10A2 +.. 40,A) {0 (AL + ()(AL") +..4+(m)(A,))  Equation 3-3
where,
n;...n, = the number of each atom per cm’
Aj...A, = the atomic mass numbers of each atom
For tissue as the absorbing medium, the relationship simplifies to:
Rapa= Rip: Equation 3-4
where,
R, = the range of the alpha in air [cm] or [mg/cm2]
pa = the density of air (1.29x1 0~ g/cm’)
R, = the range of the alpha in tissue [cm] or [mg/cmz]

p: = the density of tissue (1 Og/em’)
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Note that the units of range in media other than air are not pure distances, but rather are
distances normalized to the density of the absorbing material, which is a surrogate quantity
for the density of electrons through which the alpha particle will traverse as it creates ion
pairs and becomes neutralized to become a helium atom. This normalization process is
commonly done in radiation protection to make the results of any calculations less dependent
on the specific characteristics of the absorbing medium. As we progress through the
problems in this chapter and this book, this will be seen to be a common, and very useful,
technique.

Through the use of only these equations, we can solve for a wide variety of variables,
combinations of variables that have physical significance, or ratios of variables. The
following example problems will illustrate some of these possibilities.

Problem 3-1

What is the energy of an alpha particle that has a range of 4.0 cm in air?

Step 1: Isolate the unknown vanable:

R, =124 E-2.62 (based on the fact that ranges >3 cm in air indicate E>4MeV)

R, +2.62
124

Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

Empirical equation, therefore unit analysis is not useful.
Step 4: Plug in known quantities:

_40+262
124

Step 5:  Solve for the unknown:
E =5.34 MeV
Step 6:  Conduct reality check:

Confirm from alpha range/energy graph which indicates E = 5.5 MeV. There is
terrible agreement if the equation for E<4MeV was used.
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Problem 3-2

How much distance in air must be allowed to completely absorb a mixture of 2 MeV and 4

MeV alphas?
Step 1: Isolate the unknown variable:
R, =0.56E
Step 2: Simplify the equation:
The equation 1s already simplified.
Step 3: Validate the problem setup:
Empirical equation, therefore unit analysis is not useful
Step 4: Plug in known quantities:
R,=056e4
Step 5:  Solve for unknown:
R,=22cm
Step 6: Conduct reality check:
UseR,=1.24 E -2.62 = 2.34 cm, or use graph = ~ 2.4 cm.
Note: Only the range of the higher energy alpha is of importance in this calculation.
Problem 3-3

If the range of an alpha particle is 4 ¢cm in air what would it be in water?

Step 1:

Step 2:

Isolate the unknown variable:

RHZO:Ra pa

Simplify the equation:

The equation is already simplified.
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Step 3: Validate the problem setup:

g g
7 =cme 3
cm cm

Step 4: Plug in known quantities:
R,,=4129x107

Step 5:  Solve for the unknown:

R,,=516x107 glem®=5.16x 10~ cm

Step 6: Conduct reality check:

The answer would be expected to come out in the range less than about 10 cm, since it is
known that an alpha will not penetrate the outer layer of skin and its effective thickness is in
this range.

Problem 3-4
What is the range in tissue of the most energetic alpha from Pu-239 (5.16 MeV)?

Step 1: Isolate the unknown variable:

Rapathpt
R

R, = Rl
P

Step 2:  Simplify the equation:
The equation is already simplified.

Step 3: Validate the problem setup:

3
cme g ecm
cm = —————
cmeg

Step 4:  Plug in known quantities:
_ 37129x10°

‘ T (R, from Exhibit 3-2)
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Step 5:  Solve for the unknown:
R,=477x107cm

Step 6: Conduct reality check:

As with the last problem, the easiest benchmark to put on an alpha range is its ability to
penetrate the outer layer of skin. Here the range is below that 107 ¢cm value.

Beta Particles

In the case of beta attenuation, there are several things that are different than for alpha. First,
when we look at the number of negative betas vs. absorber thickness, as shown in Exhibit 3-
3, we observe a range, but without the extended plateau that characterized the same data for
alphas.

The first reason for this difference is that betas are not emitted monoenergetically from the
nucleus. The shape of the energy spectrum for betas is shown in Exhibit 3-4.

Note the difference between the maximum energy of betas [En,«] and the average energy of
the betas [E,,], which is generally assumed to be En,/3. The second reason is that betas have
the same mass and charge as the electrons with which they are interacting, increasing the
probability that truly elastic collisions can take place resulting in radical changes in direction
and energy.

As in the case of the alphas, empirical mathematical relationships between the maximum
energy of the betas and the maximum range have been established. Probably the most
famous statement of this relationship is known as Feather’s Rule. There are alternative

statements that are used, but Feather’s covers the largest beta energy range, and is probably
the most often used. This equation is:

R [g/cm?*] = 0.542 By - 0.133 for By > 0.6 MeV Equation 3-5
where,
R  =the range of the beta in the medium
Emax = the maximum energy of the betas
It should be noted that the physics discipline that is normally applied to the assignment of

units to quantities in equations does not necessarily apply when working with empirical
equations. The unit assignment criterion used in empirical cases is generally, “what

3.7



Number of Betas

Number of Betas

14 -

Exhibit 3-3.
Beta Range

Exhibit 3-4.
Beta Energy Spectrum

0.1 0.2 0.3 04 0.5 08 0.7 0.8 0.9 1 1.1 1.2
Energy [MeV]

3.8



quantities can I plot to make the results of experimental observations come out a straight
line?”. Therefore, whereas in the case of the alphas the unit of range is the intuitive [cm], for
betas, the preferred unit of range is [g/cm”). It can be seen from Exhibit 3-5 that the
range/energy plot for betas approximates a straight line.

As pointed out in the discussion of alpha ranges, the [g/cm®] unit makes the quantity
relatively independent of the material doing the absorbing because we have normalized to the
density of the material. However, since the equation is empirical, and the units cannot be
derived from first principles, it is imperative that the variables be addressed in the units
presented here. Any deviation from this approach will certainly yield erroneous results. It
should be noticed that there are no beta range equations with the range in terms of [cm],
although we will calculate ranges in [cm] through unit conversion.

In addition to the mathematical and graphical approaches to determining beta ranges, there
are some fairly commonly used rules of thumb available for use. The two most common
rules of thumb are:

R [g/cm?] = Enay2 (in air) Equation 3-6a
R [ft] = 12 ft per MeV (in air) Equation 3-6b
There is another implication of absorbing high-energy betas in heavy materials which is the

ability of betas to produce x-rays, as illustrated in Chapter 2 (sometimes called
bremsstrahlung). This radiation results from the conservation of energy as the electron is

Exhibit 3-5.
Beta Range vs. Energy
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decelerated by the absorbing medium. In contrast to the shielding of alphas by placing
absorber of thickness greater than the range in that material, we must be cognizant of the fact
that photon radiation may persist after a beta absorber thickness greater than its maximum
range is employed. The importance of this issue can be evaluated by use of the following
equation which gives the fraction of the total beta energy that is converted to photons:

F=3.5x10"ZE Equation 3-7
where,
F = the fraction of the beta energy that goes into the production of photons
Z= the atomic number of the absorbing material
E= the maximum energy of the betas
If the material of interest is a compound or mixture the effective atomic number is calculated:
by using the same approach as is presented in Equation 3-3, by replacing the A variable with
Z.
If the proportion of energy converted to photon radiation is large, as it often is for high energy
betas and heavy shielding materials, then shielding these photons must be considered
separately. The techniques for solving these types of shielding problems will be covered in
the “Exponentials and Logarithms” Part of this book.
The last aspect of betas that we need to consider is positive betas. These emissions come
from nuclei that are proton rich, whereas negative betas come from fission products which
are neutron rich. These positive betas are the antiparticle to negative betas. Therefore, when
a positive beta annihilates a negative beta, the result is two photons of 0.51 MeV energy.
Therefore, the shielding of these photons will be covered in the “Exponentials and
Logarithms™ Part.
Problem 3-5
What 1s the maximum range in Al in [cm] of a 4 MeV beta?
Step 1: Isolate the unknown variable:

R,=0542E __ -0.133

Step 2:  Simplify the equation:

The equation is already simplified.
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Step 3: Validate the problem setup:

Empirical equation, therefore unit analysis is not useful.
Step 4:  Plug in known quantities:

R, =0.5424-0.133
Step 5: Solve for the unknown:

R, =0.542¢4-0.133=2.035 gm/cm’

Step 6: Confirm by graph and divide by density of Al (p,= 2.7 gm/cm’®)

2
R = 2.035 _ 2.035gm/cm” _ 754 % 10" em

P, 2.7gm/cm’

Problem 3-6
What is the density of a material that exhibits 1/3 the range for a 2 MeV beta, as does water?
Step 1: Isolate the unknown variable:

0542E,, —0133
R,=
P

_ 0.542E,, —0.133

H,0
PH,0

R

Step 2: Simplify the equation:

R, Puo
RHIO pm

Step 3: Validate the problem setup:
The ratio is unitless.
Step 4: Plug in known quantities:

1

1
3 pa
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Step 5:  Solve for the unknown:
p£,=3gem’
Step 6: Conduct reality check:

Confirm using fact thatR , c 1/ p,

Problem 3-7
What is the energy of a beta that has a range of 5 x 10° mg/cm 2 in Al1?
Step 1: Isolate the unknown variable:

R,=0.542E__ -0.133

_ R, +0133
0542

(Al absorber is irrelevant)
Step 2:  Simplify the equation:
The equation is already simplified.
Step 3:  Validate the problem setup:
Empirical equation, therefore unit analysis is not useful.

Step 4: Plug in known quantities:

5040133
0542

Step 5:  Solve for the unknown:

E,..=9.47 MeV

Step 6: Conduct reality check:

Confirm by graph or rule of thumb.
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Problem 3-8

What proportion of a 5 MeV beta energy would go into photon production with a Pb
absorber? ‘

Step 1: Isolate the unknown variable:
F=35x10"ZE
Step 2:  Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:
Empirical equation, therefore unit analysis is not useful.
Step 4: Plug in known quantities:
F=35x10"e82e5
Step 5:  Solve for the unknown:
F=1.44x 10" (fraction is unitless)
Step 6: Conduct reality check:

Make independent order of magnitude estimate.
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CHAPTER 4
PHOTON BEHAVIOR

In addition to particles, ionizing radiation exists in the form of photons. Photons are packets
of electromagnetic radiation. There are two distinct forms of ionizing radiation photons:
gamma rays and x-rays. Gamma rays are photons that originate in the nucleus of an unstable
atom. X-rays originate outside the nucleus of an atom. This chapter discusses photon
behavior and how this behavior translates into radiation protection practices.

Wave Properties and Quantum Theory

Energy that is transmitted by disturbing a medium, allowing the disturbance to travel through
the medium is represented by a wave. For example, when a stone is dropped into a pond, the
kinetic energy of the stone is transmitted to the pond medium, the water. The disturbance
moves through the water, causing the water to move up and down in a cyclic thythm. This
cyclic motion is the wave. The number of cycles that the wave goes through in one second is
the frequency of the wave. The unit for frequency is the Hertz [Hz]. One Hz is one cycle per
second. The distance that one cycle of the disturbance travels through the medium is the
wavelength, measured in meters. The velocity of the disturbance, as it moves through the
medium is the product of the wavelength () and frequency (f).

v=»Aef Equation 4-1
Electromagnetic waves, such as radio waves, microwaves, and x- or gamma-rays can be
characterized by Equation 4-1. The velocity of electromagnetic waves equals the speed of
light, 3 x 10® meters per sec (m/s) in a vacuum, which is represented by the variable c.

c=Aef Equation 4-2
Although wave mechanics are adequate to represent most electromagnetic behavior, it cannot
represent all behavior. Quantum theory, or quantum mechanics, fills the gaps in wave theory
in predicting the behavior of photons. Quantum theory states that electromagnetic energy is
made up of packets of energy, called photons, which travel at the speed of light. The energy

of a photon is given by Equation 4-3, where E is the energy of the photon and h is Planck’s
constant, 6.614 x 10°* Joule-seconds [J-s].

E=hef Equation 4-3

By rearranging Equation 4-2, we find that the frequency, f, is the ratio of the speed of light to
the wavelength. Making this substitution, Equation 4-3 becomes:

E=he % Equation 4-4
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Problem 4-1

What is the energy, in electron volts [eV], of an x-ray with the wavelength of 5 x 1072 m?
What is the frequency of this x-ray? 1 eV=1.6x 10" J, ¢ =3 x 10 m/s, h=6.614 x 10>* J-g

Step 1:

Step 2:

Step 3:

Step 4a:

Step Sa:

Step 4b:

Step 5b:

Isolate the unknown variable:

a) E=he S
A
by c=Aef = f=c¢c/A

Simplify the equation:

The equations are simplified.

Validate the problem setup:

E (eV) =J-s e m/s/m. The seconds (s) and meters (m) cancel leaving eV = J. This
equation has units of energy on both sides, but not the same units. The Joules need

to be converted to eV = eV =J e eV/] =eVv

¢ (m/s) = A (m/cycle) o f (cycles/s). The cycles cancel. m/s =m/s v/

Plug in known quantities:

leV . 3x10%m/s

E=6614x10*J~se 3 2
1.6x107°J  5x107"%m

Solve for the unknown:

E =248,000 eV =248 keV

Plug in known quantities:
f=3x10%m/s/5x 1072 m/cycle
Solve for the unknown:

f= 6.0x10" cycles/s= 6.0x 10" Hz
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Step 6: Conduct reality check:

In terms of €V, Plank’s constant is approximately 4 x 10> ¢V-s. Equation 4-3 has
the energy as the product of the frequency and Plank’s constant. The product of 4
and 6 is 24 and the product of 10"% and 10" is 10*. The energy should be about 24
x 10* eV or 240 keV. v

Gamma Radiation

Gamma rays are an example of electromagnetic radiation. Other examples of
electromagnetic radiation include visible light, infrared radiation, radio waves, and
microwaves. Gamma rays originate from the nucleus of an atom. They are highly
penetrating, meaning that they are able to travel long distances through air and many other
materials.

Some atoms are naturally unstable, but following a nuclear reaction, such as the absorption of
a neutron, a stable nucleus of an atom can become unstable. This means that the reaction
produces a nucleus that has excess energy. To become stable, the nucleus releases alpha or
beta particles. Additional energy is lost by emitting a pulse of electromagnetic radiation, a
gamma ray. The energy of the gamma ray and the frequency of its emissions are
characteristics unique to a radionuclide.

Like all forms of electromagnetic radiation, the gamma ray has no mass and no charge.
Gamma rays interact with material by colliding with the electrons in the shells of atoms. They
lose their energy slowly as they travel through a material, enabling them to travel significant
distances before stopping. Depending on their initial energy, gamma rays can travel from 1 to
hundreds of meters in air and can easily go right through people. As a result, gamma rays
require more shielding material, such as lead or steel, to reduce their intensity than is required
for alpha and beta particles. Details on gamma ray interaction and shielding will be discussed
in Chapter 11, Interaction of Radiation and Matter.

This chapter examines the behavior of a point source of gamma radiation and the associated
gamma radiation field, or intensity of gamma radiation at a point away from the source. This
intensity called exposure and is measured in roentgens [R]. The exposure rate is measured in
roentgens per hour [R/hr]. Exposure is a measure of ionizations produced in air by x- or
gamma-rays and is the sum of all electric charges of one sign produced in a mass of air. One
roentgen is equal to 2.58 x 10 coulombs of charge per kilogram of air.

The gamma-ray intensity from a point source exhibits a “one-over-r-squared” relationship as
you move away from the point source. In other words, the exposure rate decreases by a factor
of & as you move a distance d from the source. The equation for this behavior is presented

below.

X, _d

—_—=— Equation 4-5
X, 4 1

4.3



where,

X = exposure rate at a distance 1 (d;) from a point source
X, = exposure rate at a distance 2 (d,) from a point source

Problem 4-2

The exposure rate 2.5 meters from a point source of gamma radiation is 80 milliroentgen per
hour (mR/hr). What is the exposure rate 5 meters from the source?

Step 1: Isolate the unknown variable:

X od]
d;

X _d;

L2 X. =
X, d? 2

Step 2:  Simplify the equation:
X, mR/hr = X1 mR/hr  (d; meters) ? / (d, meters) 2
Step 3:  Validate the problem setup:

mR/hr = mR/hr e square meters / square meters = the square meters cancel to get
mR/hr = mR/hr v/

Step 4: Plug in known quantities:
X2 mR/hr = 80 mR/hr ¢ (2.5 m)*/ (5 m)* = 80 mR/hr & (2.5 m)? /(5 m) 2
Step 5:  Solve for the unknown:
Xz mR/hr = 80 mR/hr @ 6.25 m” / 25 m? = 20 mR/hr
Step 6: Conduct reality check:
The exposure rate decreases as the square of the distance. In this problem, the
distance is doubled, so the dose rate should decrease by a factor of 2 squared, or

four. 20 mR/hr is one-fourth of 80 mR/hr, v

Problem 4-3

The exposure rate 1 meter from a point source of gamma radiation is 700 microroentgen per
hour [pR/hr]. At what distance will the exposure rate be 10 puR/hr?
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Isolate the unknown variable:

.._A,_I:d22 - d2:———X1.d]2

X, d? X,

Simplify the equation:

(dy m)* = X; pR/hr e (d, meters)2 / X3 uR/hr
Validate the problem setup:

square meters = uR/hr o square meters / pR/hr = the exposure rates cancel to get
square meters = square meters v’

Plug in known quantities:
(d, m)? = 700 pR/hr » (1 meters)’ / 10 pR/hr
Solve for the unknown:

(d, m)? = 700 pR/hr e (1 meters)” / 10 pR/hr = 70 m*
d, =+/70m* = 8.4 meters

Conduct reality check:

The exposure rate decreases as the square of the distance. In this problem, the
exposure rate decreases from 700 to 10 pR/hr, a factor of 70. The square of 8 is 64,
which is close to 70. v/

As a rule-of-thumb, the exposure rate from a point source of a single radionuclide one meter
from the source is the product of 0.5 times the energy emitted from the radionuclide and the
quantity of the radionuclide, measured in curies.

X=05¢CeE Equation 4-6
where,
X = exposure rate 1 meter from the point source, in R/hr
0.5 = conversion factor, in R/hr per curie per MeV
C = quantity of the radionuclide, in curies
E = the energy of the emitted gamma radiation, in MeV
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Problem 4-4

What is the exposure rate | meter from a 5 mCi of Cs-137? The energy emitted by Cs-137 is
0.662 MeV. 5 mCi of Co-60? Co-60 emits two gamma rays, one of 1.33 MeV and one of
1.17 MeV.

Stepl  Isolate the unknown variable:
X=05e¢CeE
Step 2:  Simplify the equation:
The equation is in a simplified form.
Step 3: Validate the problem sectup:
R/hr = R/hr/(Ci - MeV) o Ci e MeV = R/hr = R/hr v/
Step 4: Plug in known quantities:

For Cs-137: X R/hr = 0.5 R/hr/(Ci - MeV) @ 5 x 107 Ci » 0.662 MeV
For Co-60: X R/hr = 0.5 R/hr/(Ci - MeV) 5 x 107 Ci @ (1.33 + 1.17) MeV

Step 5: Solve for the unknown:

For Cs-137: X R/hr =0.001655 R/hr = 1.7 mR/hr
For Co-60: X R/hr =0.00625 R/hr = 6.3 mR/hr

Step 6: Conduct reality check:

The exposure rate is one-half the product of the curie content and energy. The
energy of the Cs-137 gamma is slightly more than one-half MeV, so the exposure
rate should be a little more than one-half of one-half of the curie content of 5 mCi.
One quarter (one-half of one-half) of 5 is 1.3. For Co-60, the total gamma energy is
2.5 MeV, which is about 4 times the Cs-137 energy. The Co-60 exposure rate is
about four times the Cs-137 exposure rate. v/

The rule-of-thumb provided by Equation 4-6 approximates the gamma constant or I” factor
for a gamma-emitting radionuclide. Exhibit 4-1 below presents the I' Factors for some
common gamma emitting radionuclides. These I factors give the exposure rate, in R/hr 1
meter from a point source. Equation 4-5 can be used to determine the exposure rate at any
other distance,
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Exhibit 4-1.
Gamma (I') Factors

Radionuclide I" Factor, R/hr @ 1 Radionuclide I" Factor, R/hr @ 1
meter per Ci meter per Ci
Sb-125 0.27 1-131 0.22
Cs-134 0.87 Ir-192 0.48
Cs-137 0.33 Fe-59 0.64
Cr-51 0.16 Mo-99 0.18
Co-60 1.32 Ra-226 0.83
Eu-152 0.58 Ru-106 0.17
Fu-154 0.62 Ag-110m 1.43
Eu-155 0.03 Na-22 1.20
Au-198 0.23 Xe-133 0.01
1-125 0.07 Zr-95 0.41

Source: Radiological Health Handbook, U.S. Department of Health, Education, and
Welfare, Jan. 1970.

X-rays

X-rays are an example of electromagnetic radiation that arises as electrons are deflected from
their original paths or inner orbital electrons change their orbital levels around

the atomic nucleus. X-rays, like gamma rays, travel long distances through air and many
other materials. Like gamma rays, X-rays require more shielding to reduce their intensity
than do beta or alpha particles. X- and gamma-rays differ primarily in their origin; x-rays
originate in the electronic shell while gamma rays originate in the nucleus.

Characteristic x-rays are emitted when electrons drop from one electron orbital shell to a
shell closer to the nucleus. Orbital electron capture and internal conversion are two
radioactive decay mechanisms that include generating characteristic x-rays. In both of these
decay mechanisms, electrons from inner orbital shells interact with the nucleus, resulting in
an electron vacancy. As other electrons move into these vacancies, characteristic x-rays are
emitted.

Another example of x-ray production is in an x-ray machine used for medical diagnostics or
therapy. In these machines, electrons are accelerated through a potential difference and
impinged on a metal target. This process produces some monoenergetic and some
continuous x-rays. Although these x-rays have a benefit to the patient, other people at the x-
ray facility must be protected from the x-rays.

Tn determining the amount of shielding required from the primary x-ray beam, a “K” factor is
determined. K is given by the following;:
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d*P

K= Equation 4-7
wur

where,

d = distance from the metal target on the x-ray machine to the area needing shielding from
the x-rays

P = permissible weekly exposure, taken here to be 0.1 R/week (a fifty week exposure at
this dose rate will equal to NRC external dose limit of 5 rem per year, assuming that 1
R =1 rem)

W = workload of the machine, in milliamp-minutes

U = use fraction, the fraction of the time that the beam is pointed towards the area needing
shielding while operating

T = occupancy factor, the fraction of the time that the area needing shielding is occupied.

For full time occupancy, T = 1; for partial occupancy, T = 0.25; for occasional
occupancy, T = 0.0625.

Areas considered to have full time occupancy include waiting rooms, offices, and control
spaces. Partial occupancy areas include corridors, utility rooms, and parking lots. Areas with
occasional occupancy include stairways, elevators, and closets.

The K factor is a convenient quantity for determining the required shielding for an area.
Publications, such as the Radiological Health Handbook (Public Health Service Publication
No. 2016, U.S. Department of Health, Education, and Welfare, 1970) and Structural Design
and Evaluation for Medical Use of X-Rays and Gamma Rays of Energies up to 10 MeV
(NCRP Report No. 49, 1976) present graphs of K values versus material thickness for
common shielding material and X-ray energy.

Problem 4-5

The primary beam of an x-ray machine points towards a corridor. The wall between the
corridor and the machine is 2.6 meters away. The beam 1s pointed towards this wall 100
percent of the time. The workload of the machine is 27,000 milliamp-minutes per week. If
the beam potential is 100 kvp, how much lead shielding is required on the corridor wall? If
the beam potential is 200 kvp? Use the graph (Exhibit 4-2) below to determine the shielding
thickness from the calculated values of K.
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Exhibit 4-2.
X-Ray Attenuation by Lead
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Step 1: Isolate the unknown variable:
_d’p
wuT
Step 2:  Simplify the equation:
The equation is in a simplified form.
Step 3: Validate the problem setup:
R/ma-min @ 1 m = (m2 e R/week) / (ma-min/week e unitless @ unitless) = The
“week” unit cancels out. Also, there is an implied 1 meter squared in the
denominator of the equation, so the m” term also cancels (that is what gives is the
“@ 1 m”). R/ma-mip @ 1 m=R/ma-min @ 1 m v
Step 4: Plug in known quantities:

B (2.6m)* @ 0.1R/ week
27,000ma — min/ week ¢ 1 0.25
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Step 5:  Solve for the unknown:
K =0.0001 R/ma-min @ 1 m

From the graph above, for a 100 kvp beam, approximately 2.3 mm of lead is
needed. For a 200 kvp beam, 4.5 mm of lead is needed.

Step 6:  Conduct reality check:

The most common way to determine shielding requirements for x-ray facilities is
from these graphs of K versus shielding thickness for different beam potentials.

The graph included with this problem is an example of an actual graph, but is not an
actual representation of true data. Resources such as the Radiological Health
Handbook (Public Health Service Publication No. 2016, U.S. Department of Health,
Education, and Welfare, 1970) and Structural Design and Evaluation for Medical
Use of X-Rays and Gamma Rays of Energies up to 10 MeV (NCRP Report No. 49,
1976) present graphs of K values versus material thickness for common shielding
material and X-ray energy.v’

A third example of x-ray production is Bremsstrahlung radiation. Bremsstrahlung are x-rays
generated when charged particles undergo rapid deceleration. For example, when a beta
particle travels near a nucleus of an atom, the electric attraction of the opposite charges
causes the beta particle’s path to bend. This phenomenon is important in radiation
protection. Beta particles do not pose a radiation hazard when the beta emitting radionuclide
is outside the body. However, when shielding beta radiation, Bremsstrahlung x-rays could be
generated. Since x-rays are penetrating radiation, the resulting Bremsstrahlung could pose a
radiation hazard.

The fraction of the beta particle’s energy converted to Bremsstrahlung x-rays is given by:
F=35x10"eZeE Equation 4-8

E is the maximum energy of the beta particle, in MeV, and Z is the atomic number of the
material that the beta particle is traveling in. From Equation 4-8, it can be scen that the
higher the atomic number, the greater the fraction of beta particle energy converted to X-ray
energy (and the greater potential for posing a radiation safety hazard). Note that Equation 4-8
is empirical and provides an estimate for the Bremsstrahlung hazard. The constant, 3.5 x 10™
has units of inverse MeV.

Problem 4-6
What fraction of the incident beta energy from S-35 is converted to Bremsstrahlung x-rays

when shielded by aluminum (Z=13)? Shielded by lead (Z=82)? What material is the better
shield for S-35, a pure beta emitter? The maximum beta energy for $-35 is 0.1674 MeV.
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Isolate the unknown variable:

F=35x10%eZeE

Simplify the equation:

The equation is in a simplified form.

Validate the problem setup:

F (unitless) = (1/ MeV) e (unitless) » MeV = unitless = unitless v/
Plug in known quantities:

For aluminum: F=3.5x 10” 1/MeV o 13 ¢ 0.1674 MeV
Forlead: F=3.5x 10 1/MeV o 82 ¢ 0.1674 MeV

Solve for the unknown:

For aluminum: F=7.6x 10*
For lead: F = 4.8 x 10~

Conduct reality check:
The product of Z and E for aluminum is slightly more than 2, so F should be slightly

more than twice the constant of 3.5 x 10™*. v' The Z for lead is more than 6 times the
Z for aluminum, so the F for lead should be more than 6 times that of aluminum. v/
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CHAPTER S
ACCELERATORS

Accelerators impart large amounts of kinetic energy to charged particles that in turn bombard
target materials. Usually, these charged particles are accelerated in a vacuum then brought
out of the evacuated region to bombard the target. This bombardment generates other nuclear
particles or exotic radionuclides. Often, stray or extraneous radiation (characteristic x-rays,
prompt gamma radiation from the target, neutrons) is generated in the accelerator process.
The accelerated particles, as well as the stray radiation, pose a radiation hazard to operators.

Additionally, accelerators are used to generate charged particle beams used for medical
therapy. In these accelerators, the target is a portion of the body and the charged particles

themselves provide the therapeutic benefit.

Electric Potential

As with x-ray machines discussed in Chapter 4, accelerators use electric or magnetic fields to
impart kinetic energy on charged particles. Remembering from classic physics, particles of a
particular charge (positive or negative) are attracted to an oppositely charged particle or plate.
Similarly, charged particles subjected to a magnetic field will move. These principles govern
the operation of accelerators.

From the study of electricity, the quantity of electric charge is measured in coulombs [C].
The charge of a proton or electron is the same in magnitude, 1.6 x 10" C and opposite in
sign. The electron has a negative charge and the proton a positive charge. Neutrons, which
exist in an atom’s nucleus with protons, have no charge.

Current is the movement of charged particles. The amount of current is measured in amperes
[amps]. One amp is equal to a coulomb per second [C/s]. 6.25 x 10'® electrons moving
through a point in a second would generate a current of 1 amp.

Charged particles of different sign are attracted to one another while charged particles of like
sign are repulsed. As a result, if you hold one charged particle stationary and place another
charged particle near it, there is an electric force between them. Particles of the same sign
will want to move farther apart while particles of the different sign will want to move
together. To keep the particles at a constant distance from one another, work must be
performed. Similarly, when the charged particles move together or apart, work is performed
by the particles. The amount of work or energy exerted per amount of charge is called the
potential difference existing between the particles and is measured in volts. One volt is equal
to exerting one joule of energy on one coulomb of charge:

V=W/q Equation 5-1
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where,

V= potential difference in volts

W = work or energy, in joules

q = charge, in coulombs

Problem 5-1

How much work is required to move one electron across a potential difference of one volt,

Step 1: Isolate the unknown variable:

V =Wi/q
Multiply both sidesbyq =>Veq=W

Step 2:  Simplify the equation:
W=Veq
Step 3:  Validate the problem setup:
W (joules) = V (volt) ¢ 1 (joule/coulomb per volt) e q (coulomb) = J =] v
Step 4: Plug in known quantities:
W=1VelJC/Vel6x10"7C
Step 5:  Solve for the unknown:
W=16x10"]
Step 6  Conduct reality check:

One electron subjected to a potential difference of one volt is the definition of an
electron volt [eV]. One electron volt is equal to 1.6 x 1077 J. v/

As illustrated in the problem above, the electron volt is a measure of energy. The eV is a
common measure of energy in nuclear applications. However, the unit is very small. Often,

the energy is in terms of million electron volts [MeV] or thousand electron volts [keV].

Accelerator Operation

As discussed earlier, accelerators subject charged particles to a potential difference. This
electrical energy is then converted to kinetic energy of the moving particle. The beam of the
accelerator, which is composed of the accelerator’s charged particles, is measured in current,
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or amps. The current can be converted to the number of charged particles passing a point in
the beam (for example, striking a target) in a second of time.

I [amps] = q [C] / time [s] Equation 5-2
# of particles/second = [q (C) /time (s)]  # of particles/coulomb Equation 5-3
There are 1.6 x 10™"° C of charge per electron or proton. There is also 1.6 x 10" C of charge
per deuteron (a hydrogen ion with one proton and one neutron) or triton (a hydrogen ion with
two neutrons and one proton => a tritium ion). A helium nucleus (an alpha particle) has a
charge of 3.2 x 10° 19 ¢, since it has two protons. For heavier i 1ons the quantity of charge, in
coulombs, is the product of the number of protons and 1.6 x 107 C.
Problem 5-2
How many tritons strike a target per second given a 0.1 pamp cyclotron beam?

Step 1: Isolate the unknown variable:

I (amps) = q (C) / time (s)
# of particles/second = (q [C] /time [s])  # of particles/coulomb

Step 2:  Simplify the equation:

To solve this system of two equations, substitute I into the second equation for
g/time.

# of particles/second = I [amps, or C/s] e # of particles/coulomb
Step 3:  Validate the problem setup:

# of particles/second = 1 [amps, or C/s] e # of particles/coulomb =
# of particles/second = # of particles/second v/

Step 4: Plug in known quantities:
# of particles/second = 0.1 x 10" amps o 1 triton/1.6 x 107" coulomb
Step 5:  Solve for the unknown:

# of particles/second = 6.3 x 10'" tritons/s
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Step 6: Conduct reality check:

One amp is one C/s or 6.3 x 10'® tritons per second. 107 amps would be 6.3 x 10"
tritons per second. v’

When particles strike a target, often radiation is emitted. This radiation is emitted
1sotropically, in other words in all directions. To determine the flux of the radiation, in
particles or photons per unit area per second at a point, you must look at a sphere with its

center at the target and radius equal to the distance from the target to the point of interest.
The area of a sphere with radius r is:

dermer? Equation 5-4

To determine the flux at a point, you divide the number of particles or photons emitted from
the target per second (the production rate) by the surface area of a sphere through the point of
interest.

Problem 5-3

If the beam of tritons in Problem 5-2, above, generates 0.01 neutrons per triton when it strikes
the target, what is the neutron flux 2 meters from the target?

Step 1: Isolate the unknown variable:

production rate (neutrons |/ s)

flux =

4oy e p?
# of neutron/second = # of tritons/s e 0.01 neutrons per triton
Step 2:  Simplify the equation:

To solve this system of two equations, substitute the second equation in for the
production rate.

_ # of tritons / s ® 0.01 neutrons per triton (neutrons / s)

flux

4o T 0

Step 3:  Validate the problem setup:

# of neutrons/second/m? = # of neutrons/second/m? v’
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Step 4: Plug in known quantities:
# of neutrons/s/m” = 6.3 x 10'! tritons/s e 0.01 neutrons/triton/{4 e 7 ® (2m)*}
Step 5:  Solve for the unknown:
# of neutrons/s/m” = 1.3 x 10° neutrons/s/m’
Step 6: Conduct reality check:
One neutron is emitted for every 100 tritons hitting the target. A sphere with a
radius of 2 meters has a surface area of about 50 m” so the neutron flux should be
about 1/5000™ of the triton beam intensity, or about 1 x 10® neutrons/s/m°. v’
In the problem above, the answer was expressed in neutrons per second per square meter.
Commonly, particle or photon flux is expressed in particles (or photons) per second per
square centimeter. Since there is 100 centimeters in a meter, there is 10,000 square

centimeters in a square meter (100 squared). The answer for Problem 5-3 would become 1.3
x 10* neutrons/s/cm? (the answer from above divided by 10,000 cm?*/m?).
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CHAPTER 6
MEASUREMENT OF RADIATION

For purposes of this discussion, there are two basic types of radiation detectors: capacitor-
type and pulse-type. Typical capacitor-type detectors are the self-reading pocket dosimeter
and the condenser R meter. Examples of the pulse-type are ionization, G-M, and
proportional-based instruments, as well as scintillation and most other solid-state devices.
Since both the operational fundamentals and the radiation applications of these two groups of
instruments are quite different, they will be dealt with separately in this chapter.

Capacitance-Type Instruments

As the name implies, the operation of this type of instrument is based on the capacitor, which
stores charge in an electric field, but which is discharged when exposed to 1onizing radiation.
Furthermore, the extent to which it is discharged is proportional to the amount of 1onizing
radiation to which it is exposed, independent of dose rate at normally encountered dose rates
where these dosimeters are used. The relationship among the capacitance of a capacitor, or
dosimeter [C], and the stored charge [Q], and the applied voltage [V] is :

C [Farads] = Q [Coulombs] / V [volts] Equation 6-1
The mechanism for discharging the capacitor during exposure to an ionizing radiation is the
migration of the resulting ion pairs to the capacitor electrodes. The ion pairs all take the
same amount of energy to create, to a first approximation, and all exhibit the charge of an
electron. These two quantities are constants, as defined in the problem solving technique
adopted in this book. Also, the mass of air is required for solving these problems because it
is involved in the Roentgen definition of the quantity of ionizing radiation to which air
(detector chamber) is exposed. Values to be used for these quantities in the following
problems are as follows:
e charge on an ¢lectron = 1.6x10"° [coulombs]
e energy to create an ion pair (or free an electron) = 35 [electron volts (eV})]
e (definition of Roentgen [R] = 87.7 [ergs/gram] = 2.58x10™ [coul/kg]
o 1.6x10° [ergs/MeV]
e 10°[eV/MeV]

e density of air at STP [p,] = 1.29x107 [grams/cm’}
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These variables, constants, conversion factors and definitions are used in the design,
calibration, operation and interpretation of outputs from capacitor-type detectors used for
radiation protection purposes. This will be demonstrated in the following example problems.
Problem 6-1

A pocket ionization chamber with a capacitance of 3 (pF) and a volume of 1 cm?® is initially
charged to 150V. What exposure to gamma radiation will discharge the chamber to 130 VV?

Step 1: Isolate the unknown variable:

_Q
€=y
Q=CV

Step 2:  Simplify the equation:
The equation is already simplified.

Step 3: Validate the problem setup:
[coulomb] = [Farad][Volt]

Step 4: Plug in known quantities:

Q,=3x10"e1.5x10°=4.5x 10" coul
Q,=3x10"e1.3x10°=3.9x 10 " coul

AQ=45x10"-3.9x10"=0.6 x 10 “coul

IP
0.6 x10 " coul e —————=0.375x10° IP
X W 16x10 ™ coul X
0375 % 10° IPe =Y. o M&V_ ) 6x10-0 -9, _R9 om’ :
. [ ] [ ] o], [ [ ] )
IP  10°V MeV 87.7erg 129x10°g cm’

Step 5:  Solve for the unknown:
1.8 x 10 'R=180 mR
Step 6: Conduct a reality check:

A 180 mR exposure is a realistic outcome, based on experience with such
chambers.
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Problem 6-2

A standard thimble chamber is exposed to a radiation field and loses a charge of 3 x 10 i
coul in 10 seconds. If the volume of the chamber is 1.2 cm *, what is the exposure rate in [R/
sec|?

Step 1: Isolate the unknown variable:
Unit analysis.
Step 2:  Simplify the equation:
Unit analysis.
Step 3: Validate the problem setup:
Will be done while solving the problem.
Step 4: Plug in known quantities:

kgR 3x107" coul 1 cm’ 10°g
— [ ] L] 3 [ ] 3 [ ]
2.58x10™* coul 10sec 12em” 129x107°g kg

Step 5:  Solve for the unknown:

R
75%x 1072 —
SEC

Step 6:  Conduct reality check:

An outcome in the range of mR/sec is realistic based on experience with such
chambers.

Pulse-Type Instruments

As their name implies, pulse-type instruments create pulses of current when exposed to
ionizing radiation. These pulses can be counted individually, can be integrated over time, or
integrated over other characteristics (like energy) to yield important radiation protection
information.

For the gas filled tubes of this type, it is easily observable, across the complete range of

operational characteristics, that the more voltage that is applied across the electrodes, the
greater the current; and the more intense ionizing radiation field they are exposed to, the
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greater the current. If one plots output pulse height vs. Voltage applied to the detector,
starting at zero volts, the curve in Exhibit 6-1 results.

Exhibit 6-1.
Ionization-Type Detector Response
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The first abrupt rise in pulse height with increased voltage is the result of increasingly
efficient collection of the ions being created by exposure to the ionizing radiation field. It is
assumed that the intensity of the radiation field is constant throughout the collection of these
data. The first plateau is called the ionization region and here the ions created are being
totally collected on the electrodes. It should be noticed that this condition produces the
collection of more alpha ions than beta ions because alpha particles create many more ions
per unit track length in the chamber.

The next higher voltage region on the Exhibit is called the proportional region. Here, the ion
pairs created directly by the incident jonization radiations are multiplied by the electric field
in the chamber, but the output current is proportional to the amount of energy originally
deposited in the chamber.

The highest voltage plateau on the Exhibit is the Geiger-Mueller region. Here, the initial
ions are greatly multiplied by the applied electric field, and because of the magnitude of this
multiplication, the output becomes independent of the amount of energy initially deposited in
the chamber. At voltages higher than the G-M region, the ability of gas in the tube to
insulate one electrode from the other is lost, and a continuous discharge (arcing) situation is
established and the tube is rendered useless.
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Looking only at the G-M region of the previous curve, and plot counts per minute [cpm] vs.
Voltage, the curve shown in Exhibit 6-2 results.

Exhibit 6-2.
G-M Detector Response
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There are two primary aspects of interest in this curve. The first is in terms of answering the
question, “At what voltage should the detector be operated?” It should be noticed that in the
lower voltage ranges no counts per minute result. The answer is usually something like “1/3
to V2 of the way between V, and V ,” which defines the extent of the plateau region. This is

where variations in count rates with normally small voltage changes are minimal.

The second interest is related to the first in that it will determine how true the last statement
is for any specific detector. This question is “What is the slope of the curve on the plateau?”
Because this question is so important and, in fact, is a prime criterion for accepting or
rejecting a detector for use, specifications have been set in defining this slope. This
specification is that the slope be assessed in the units of [%/100volts]. Therefore, using the
variables noted on the Exhibit, the definition of the slope is:

Slope = {(C,-C1)/100} » 10%(V ,-V ) Equation 6-2

Notice that this equation conforms to the classical form of slope = rise/run. For most
detectors of this type a slope in the range 3% or below is judged to be good. If the slope of
the plateau is much greater than this acceptable value, then the variations of count rate with
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small variations in voltage are large enough to be unacceptable for most radiation protection
uses. Once the appropriate operating voltage is determined for a detector, then the interest
turns to the Calibration Factor or Efficiency of the detector. This quantity is defined by:

CF [%] = {NCPM [net counts/minute]/DPM [disintegrations/minute]} 100 Equation 6-3

where,
NCPM = CPM (sample) - CPM (background)

This is different than the “intrinsic efficiency” which is the probability that a count will be
recorded if radiation enters the sensitive volume. This CF considers the geometry factors
involved in the radiation getting to the detector as well as the probability that the radiation
will be able to penetrate to the sensitive volume.

The point was made earlier in this book that it is important to be able to solve any of the
equations discussed for any of their variables, given sufficient information. This is
particularly true for this equation, because occasions for using the equation to determine all
of the variables are nominally equal. As will be demonstrated by problems to follow,
instrument calibrations to standard sources involve using the equation as stated. Establishing
the unknown activity of a source involves using the known efficiency and the observed ncpm.

This comparison to a standard approach is also used to determine the mass of a radionuclide
that is present in a sample. The quantity involved in these determinations is called “specific
activity”, which is defined as the activity [Ci] per gram [g] of material. The technique is
based on the fact that (1) the activity of a specific nuclide is proportional to the number of

atoms present and (2) that a mole of any element contains Avogadro’s Number of atoms
(6.02 x 10* atoms). In calculating these quantities we use the following equations:

A = -AN [disintegrations/unit time] Equation 6-4
where,
A = the disintegrations per unit time of the radionuclide

A = 0.693/half life [1/unit time] Equation 6-5

where,

N = number of atoms of radionuclide present in the sample
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g/gmw = N/Na Equation 6-6
where,
g = grams of radionuclide in the sample
gmw = gram molecular weight (atomic mass number)
N =number of atoms of radionuclide present is the sample
Na = Avogadro’s Number

Whether the radiation protection problem calls for converting activity to mass or mass to
activity, the first step is to calculate N, the number of radionuclide atoms in the sample. If
the activity of the sample is given this calculation is done using Equation 6-4, making sure
that the time unit in the activity [dps or dpm] quantity is the same as the time unit for the
half-life. Following the determination of N, in this typical problem, the mass is calculated
using Equation 6-6, knowing N from the initial calculation, the gmw of the radionuclide and
the constant Na.

If the problem is reversed and the mass is known and the activity is the unknown, N is
calculated from Equation 6-6, knowing the mass in grams, gmw and Na. Once N is known
the activity of the sample is calculated using Equation 6-4, knowing N and the half-life,
which yields A when divided by 0.693. Again, it is important to note that the time units of A
and A must be the same. To convert Ci, or some fraction of a Ci, usually the time unit is the
second for the half-life and 1/second is the unit for A.

Since this type of detector comes in many shapes, sizes and designs, it is highly important to
understand that the current that results from an exposure to an ionizing radiation field will
depend on the operating pressure and temperature of the detector. This comes about because
the number of ions produced per unit path length of the ionizing radiation is dependent upon
the number of gas molecules it encounters per unit path length. The number of molecules it
encounters is determined by the density of the gas, the pressure at which the gas is in the
detector and the operating temperature of the gas. For a detailed understanding of this
concept, additional study of Boyle‘s Law is recommended.

For purposes here, it will be sufficient to recollect what is probably intuitive and common
knowledge about the behavior of gases. First, only a certain amount of gas can be put into a
container at a specified pressure and temperature. If more gas is to be put into that volume,
more pressure must be applied. It is also true that a reduction in the temperature of the gas
will allow more gas to be put into the specified volume. Conversely, if, given the same
volume, one wishes to reduce the gas pressure, less gas will be able to occupy the container.
Likewise, an increase in temperature will either result in an increase in pressure or gas will
have to be vented from the container to keep the pressure constant. The mathematical
statement of this principle is
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(Pressure ® Volume)/Temperature = constant Equation 6-7

To evaluate the relevance of this concept to currents from radiation detectors resulting from
exposure to ionizing radiation, and other applications, a Standard Temperature and Pressure
[STP] has been defined. These quantities will be useful in working radiation detector
problems. The definitions are:

Standard Temperature = 273 degrees Kelvin [°K]; °K = °C + 273
Standard Pressure = 360 mm Hg or 1 atmosphere

The degree to which deviations from STP affect the current flowing from a detector as a
result of exposure to a radiation is evaluated by forming the ratio of standard pressure to the
actual pressure and the actual temperature to standard temperature, remembering that an
increase in pressure will result in an increase in current and an increase in temperature will
result in a decrease in current, because of the effect of these two conditions on the number of
gas molecules a radiation will encounter per unit path length while in the detector.
Mathematically this concept can be stated:

actual current = current at STP e (actual pressure/standard pressure) o
(standard temperature/actual temperature) Equation 6-8

When working problems, one must be very careful to make sure that the proper pressure and
temperature quantities are in the numerator and denominator of the calculation setup.

The response of gas filled detectors is also a function of the energy of the incoming
radiations. At low energies radiations may not be able to penetrate the detector tube and/or
shield. At intermediate energies phenomena beyond the scope of this book result in the
detector either under- or overresponding. At higher energies normally detectors indicate the
true radiation intensity. A quantity called the “Correction Factor” is used to communicate
these over and underresponses and to enable the detector user to make the appropriate
corrections. A typical Correction Factor curve is shown in Exhibit 6-3.

The Correction Factor is defined by the equation:

CF = True Reading / Meter Reading Equation 6-9
where,
CF = Correction Factor [unitless]
True Reading = the true radiation intensity [in units of the meter reading]

Meter Reading = what the output of the detector instrument indicates [in units of mR/hr, etc.]
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The Correction Factor curves for specific detector types are different but are supplied by the
manufacturer to the user.

Exhibit 6-3.
Energy Dependence of Correction Factor
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Problem 6-3

60 80 100 200 400 600 800 1000 2000 4000
Energy [keV]

A radioactive sample is counted for 1 minute, yielding 100 counts [GC]. A background
count is made for 10 minutes, yielding 100 counts [BC]. What is the net count rate [NCR}?

Step I:

Step 2:

Step 3:

Isolate the unknown variable:
NCR + BCR = GCR

NCR = GCR - BCR

Simplify the equation:

The equation is already simplified.

Validate the problem setup:

[cpm] = [cpm] - [cpm]
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Step 4:  Plug in known quantities:

NCR“@ 100
1 10

Step 5:  Solve for the unknown:
NCR =90 cpm

Step 6: Conduct reality check:
Check arithmetic.

Problem 6-4

Would you accept or reject measurements from a detector that exhibited a plateau
characterized by C, = 500 cpm, V, = 1000 V, C, = 600 cpm and V , = 1800 V?

Step 1: Isolate the unknown variable:

[(CZ_Q)/IOO

104
v,y ]

slope =

Step 2:  Simplify the equation:
The equation is already simplified.

Step 3:  Validate the problem setup:;

Step 4:  Plug in known quantities:

(600-500)/100
1800—1000

slope = [

Step 5:  Solve for the unknown:
slope = 12.5% = reject measurements
Step 6: Conduct reality check:

Check arithmetic.
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Problem 6-5
What is the efficiency of a detector that yields a count rate of 1 cps from a 100 pCi source?

Step 1: Isolate the unknown variable:

CF= P
dpm dps

Step 2: Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

Ratio is unitless.
Step 4: Plug in known quantities:

a2 5 e 3x1 0"dis _
dps=10°e 107 Ci®e ———=3.7dps
Cisec

Step 5:  Solve for unknown:

1
CF=--=27"
17 27%

Step 6: Conduct reality check:
Efficiencies in this range are realistic.
Problem 6-6

What current will flow in a 10 cm® chamber when exposed to a 100 mR/hr radiation field at
Standard Temperature and Pressure (STP)?

Step 1: Isolate the unknown variable:
Unit analysis.
Step 2: Simplify the equation:

Unit analysis.
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Step 3: Validate the problem setup:

Will be done while solving the problem.
Step 4: Plug in known quantities:

ampsec 107'R . 2.58x107 coul . hr o 10cm’ e 129x107g . kg

coul hr kgR 3600sec cm’ 10°g

Step 5:  Solve for the unknown:

Current = 9.25 x 10 " amp
Step 6: Conduct reality check:

Currents in the range of ppamps are realistic for these situations.
Problem 6-7

At what pressure isa 1 cm’ chamber operating if exposure to a 40 R/hr field yields a current
flow of 10 "' amp?

Step 1:

Step 2:

Step 3:

Step 4:

107 amp = 40—
P

Isolate the unknown variable:
Multiplicative model.

Simplify the equation:

Multiplicative model.

Validate the problem setup:

Will be done while solving the problem.

Plug in known quantities:

R 258x107 coul , 129x107g &g hr
———————elcm" e e e oP
kgR cm 10°g 3600sec

10 "amp=3.7x10"" P

107" amp

 3.7x 107" amp
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Step 5:  Solve for the unknown:
P=2.7atm
Step 6: Conduct reality check:
Chambers often operate at pressures in this range.

Solid State Detectors

One concept that is unique to solid state detectors is their ability to indicate the energies of
incident radiations. However, for this type of information to be interpreted for beneficial
purposes, the detector and its associated instrumentation must be calibrated, that is, the
location of the output peaks from the detector on the energy scale must be calibrated to the
known energy of the radiations that gave rise to the peaks. This calibration is in addition to
the calibration of NCPM/DPM discussed in the last section.

In most cases, it can be assumed and confirmed that the relationship between channel number
(or spectrometer setting) and energy is linear. This means that, theoretically, only two points
need be specified before the line covering the whole energy spectrum can be drawn. In
reality, several points are usually experimentally determined during the calibration process,
to more accurately establish the location of the calibration line. Such a line is shown in
Exhibit 6-4.

Once the location of the calibration line is established for a detector system, then the
locations of unknown lines can be translated to energies with the objective of either
identifying unknown radionuclides or determining the amount of radionuclide present in the
sample being counted. The utility of this process is demonstrated in the following problems.

Exhibit 6-4

Energy Calibration Curve
3000

2500 + /
2000 +

1500 +

Energy [keV]

1000 +

500 +

0 100 200 300 400 500
Channel Number
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Problem 6-8

If the calibration line for a Nal(TI) detector is characterized as 10 keV/channel, what is the
energy of a peak observed at channel 667

Step 1: Isolate the unknown variable:
Multiplicative model.
Step 2:  Simplify the equation:
Multiplicative model.
Step 3: Validate the problem setup:
Will be done while solving the problem.
Step 4:  Plug in known quantities:

10keV MeV
[ ]
channel 10%keV

66 channel o

Step 5:  Solve for the unknown:

Energy = 0.66 MeV
Step 6: Conduct reality check:

Energy recognizable as that of Cs-137.
Problem 6-9

If the 1.33 MeV peak from Co-60 is found in channel 1000, in what channel would its 1.17
MeV peak be expected?

Step 1: Isolate the unknown variable:

MeV, _ MeV,
channel, ~ channel,

Step 2:  Simplify the equation:
The equation is already simplified.

Step 3: Validate the problem setup:
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Ratio is unitless.
Step 4:  Plug in known quantities:

133MeV _ 1.17MeV
1000channel channel,

Step 5:  Solve for unknown:

channel , = 880

Step 6: Conduct reality check:
Check arithmetic.
Problem 6-10

What is the efficiency of a scintillation detector if exposure of the detector to a 10 pCi
sample yields 1 cpm for a peak known to have a photon yield per disintegration of 80%?

Step 1: Isolate the unknown variable:

_ cpm
~ dpm

CF
Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

Ratio is unitless.
Step 4:  Plug in known quantities:

lcpm
ha)

cE= —98 " 4100
dpm

dis 60sec
[ ]
pCisec  min

dpm = 10pCie3.7 x 10 =22.2 dpm

Step 5:  Solve for the unknown:
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1
(o8
= : = 0
CF 227 ¢100 = 5.63%

Step 6: Conduct reality check:

Answer is in a range of reasonable efficiencies.
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CHAPTER 7
ENVIRONMENTAL TRANSPORT AND SAMPLING

An important component of many radiation protection programs is environmental
surveillance. It is the intent of this chapter to present a highly simplified analysis (ignoring
radiological decay during transport) of how radionuclides are transported through surface
water, groundwater and terrestrial systems. Atmospheric transport will be covered in the
Exponential/Logarithm Part of this book. The objective here is to present problems that
illustrate how environmental modeling and environmental sampling come together in the
radiation protection process.

The first section of this chapter contains discussions of features of environmental transport
that are independent of the transport medium involved. The second section discusses those

features that are unique to each of the transport systems.

Transport Medium Independent Features

The most commonly used approach to environmental transport is called “pathway analysis”.
In this approach all of the receptors of radionuclides from the initial release to air or water,
through all intermediate receptors like foodstuffs, to the final receptor-humans, are
characterized by compartments. A diagram of one much studied pathway is shown m
Exhibit 7-1.

Exhibit 7-1.
Environmental Pathway Diagram

I-131 Release
U
River
U
Irrigation
U
Grass
U

Cows

U
Milk
U
Man
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In this pathway, there exists a hypothetical I-131 inventory which is released to a river, either
in a chronic (slow release over a long time) or acute (larger release over a short time) release
mode and transported by the river water to an irrigation system which supplies the
contaminated water to grass, that is eaten by cows, that produce milk, that is consumed by
man, resulting in a thyroid dose in humans,

Emergency responses are commonly based upon the dose consequence estimates that result
from the release of a specified quantity of radionuclide. Environmental surveillance
programs are commonly based on an understanding of the relative concentrations of
radionuclides in various compartments of an environmental transport system, where
radionuclides are likely to be found in high concentrations in the environment, and with
which compartments humans interact directly. All of these endeavors require an
understanding of the relationship of radionuclide concentrations in all compartments of the
transport system with all other compartments, especially the magnitude of the release and the
dose to man.

To illustrate the sequence used to calculate the concentrations in the compartments of an
environmental transport system, we will examine the pathway from release of a radionuclide
to a river, fish uptake of the radionuclide, and consumption of the contaminated fish by
humans. The calculation sequence for this type of problem is:

e evaluate sourceterm

calculate concentration in initial receptor

calculate concentration in fish using concentration factor approach

determine how much fish is consumed by maximum exposed individual (MEI)
calculate dose to MEI

The evaluation of a sourceterm usually begins with a determination of the radionuclide
inventory at risk. This could be Cs-137 inventory in an irradiated fuel element that fails, for
instance. For catastrophic accidents, usually default values for a release fraction (defined as
the ratio of the amount released to the amount in the inventory at risk) have been established
by experimentation and/or modeling. In less severe, acute-type releases, often the effluent
monitoring system will indicate the amount of radionuclide released. Almost always, in
chronic release cases, either periodic sampling or effluent measurements will indicate the
magnitude of releases.

In the fisherman scenario, since it takes a long time for the fish to come to concentration
equilibrium with the radionuclides in the water, we will consider the release to be a chronic
condition. Qur sourceterm would be evaluated either by prerelease sampling or continuous
monitoring. Let us assume that our monitoring indicates that the concentration of Cs-137 in
our water effluent is 2x10™* pCi/em® and the flow rate is 10 liters/minute. Converting liters to
cm’ and multiplying these two values yields a release rate of 20 pCi/min. If the river is
running at 10° cm®/min, the concentration in the river is 2x10°® uCi/em’ (20 uCi/min »
min/10° cm® ) at the point where complete mixing of the release in the river flow has
occurred.
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It is known that fish can concentrate Cs-137 in their edible tissue to a point where the
concentration in the tissue is 10° times that in the surrounding water. This factor is called the
“Concentration Factor” and is defined by

CF = (concentration in the medium of interest)/
(concentration in previous compartment or host medium) Equation 7-1

By multiplying the concentration 1n the water by the 10* concentration factor, we arrive at a
concentration in the fish of 2x107 uC1/cm or 2x107 uCi/gram of tissue. As will be covered
in detail in the “Internal Dose” chapter of the Exponential/Logarithms Part of this book, the
dose to a human resulting from an intake of radionuclide is calculated by multiplying the
concentration of the radionuclide in the ingested material (fish, in this case) by the mass of
the material ingested per unit of time, then by a dose factor. Assuming that our MEI eats 0.5
kg of these fish per day, his/her intake would be 10™ uCi/day. Taking this intake rate times a
dose factor [unit of mrem/pCi] one arrives at a dose per day estimate for the MEL If at some
point in time the ingestion exposure ceases, multiplying the dose per day by the number of
days the exposure occurred, yields the dose to the MEL

In some cases, all of the required information in not known for certain because of the lack of
monitoring data, etc., so worst case default values for many transport quantities have been
experimentally determined and are adopted as surrogate data when there are no known values
for key quantities. For example, in the fisherman scenario, if the release rate for the Cs-137
were unknowable, one might assume that the Cs-137 was in the effluent stream at the Cs
solubility limit in units of grams per liter. Using the specific activity calculation approach
demonstrated in the Measurement of Raa’zatzon chapter, this gram-based quantity could be
converted to a pCi/l value to replace the 2x10™ pCi/em’ value we used, based on effluent
measurement data.

Similarly, if data are insufficient to accurately calculate or determine the magnitude of
releases from resuspension of contaminated soil or fire entrained contamination, many times
a worst-case maximum airborne particulate loading of 10 mg/m° is used. Again, using the
specific act1v1ty calculation approach, this can be converted to an airborne concentration in
units of uC1/m and propagated through the airborne transport system using the concentration
factor approach demonstrated in the fisherman scenario for water.

For many of the more commonly analyzed release scenarios, default release fractions have

been developed. These are radionuclide and release scenario specific and are tabulated in
numerous accident analysis references.
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Transport Medium Dependent Features

Surface Water --

As demonstrated in the fisherman scenario, concentrations in rivers are calculated assuming
that the release concentration is diluted in the river volume to yield a lower concentration in
the river water. It was also demonstrated in that scenario that there are concentration
mechanisms that take the radionuclide in the river water and concentrate it to much higher
values than exist in the water. Fish were given as an example in the fisherman scenario.
Certain radionuclides are also highly concentrated in river sediments and in aquatic plants
that may be ingested by fish that are then consumed by humans, or may be directly ingested
by humans. If comprehensive and accurate, these transport pathway diagrams become very
complex and are often referred to as “food webs”.

Groundwater --

Since groundwater flows ever so much more slowly (can be as slow as cm/year) than surface
water, flowing through small crevices, and therefore having time to interact with the ion
exchange properties of the soil or geologic formation through which it is flowing, the
determination of concentration of radionuclide in groundwater at a specific point is space and
time 1s slightly different than for surface water. First, because of the ion exchange action of
geologic media on most radionuclides, most do not travel “downstream” as fast as the
groundwater flows. The ratio of the velocity of the groundwater flow to the velocity of
radionuclide movement is called “Ky” and ranges from 1.0 to many thousands. Considering
Ky, but ignoring the ion exchange process as a radionuclide REMOVAL mechanism, the
radionuclide is diluted in less volume than would be estimated using the surface water
technique. For example, if a specific radionuclide exhibits a K  of 100, then the worst-case
concentration would be calculated by assuming dilution in only 1/100 of the groundwater
flow (assuming that the concentration limit for the radionuclide is not exceeded).
Furthermore, if the distance from the release point to the point of interest is great, given
insufficient time for the radionuclide to travel, this distance will preclude any radionuclide
being ingested at that point until the radionuclide arrives. For example, if the groundwater of
interest flows 1 km/year and the radionuclide has a K40f 100, if the point of interest were 1
km from the release point, no radionuclide would be expected to arrive for 100 years. At that
time, the worst case average concentration would be calculated by dividing the quantity of
radionuclide released to the groundwater over the 100 years by the affected volume of
groundwater between the release point and the point of interest. This concentration reflects a
worst case because it ignores the radionuclide removed from the groundwater by both ion
exchange and radioactive decay.

Terrestrial --
Terrestrial transport pathways are often more complex than water pathways because of the

many more mechanisms that can (1) introduce contamination to the system, (2) the many
compartments that may participate in radionuclide transport and (3) the many ways in which
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these compartments might interact, depending on the climatic characteristics of the location
and the radionuclide of interest.

For instance, contamination might be introduced to a terrestrial pathway via a release from a
stack to the atmosphere followed by deposition of the suspended particulates onto the ground
or plant surfaces. In this case the concentration in a foodstuff is calculated by

Cr= Cair Va Fo Equation 7-2
where,
C¢ =concentration in the foodstuff [pCi/kg]
Cair = concentration in air | ;,tCi/m3 ]

Vg = deposition velocity [m/day] (can be assumed to be 1000 for most applications)

F. = transfer factor defined as concentration in the foodstuff per unit deposition rate
[uCi/kg or pCi/l per pCi/m™d] (ranges from 107 to 1.0)

Concentrations in animal products are calculated by (ignoring radioactive decay)

Cap = Fanimar (Crorage Qr T Cuwater Qw) Equation 7-3
where,
Cyp = concentration of radionuclide in animal product [uCi/kg or pCi/l]

transfer factor of radionuclide defines as the fraction of daily intake transferred to the
animal product [d/kg or d/1] (ranges from 10%to 107

Fanimal =
Crorage = concentration of radionuclide in forage [pCi/kg]

Qr = quantity of forage consumed [kg/d]

Cyater = concentration of radionuclide in water [pCi/l]

Qw = quantity of water consumed [1/d]

A second frequent mechanism for introducing contamination to the terrestrial ecosystem is
resuspension. In this case the concentration in the air is calculated through the use of a

quantity called “resuspension factor” which is defined as

Resuspension Factor = concentration in air [nCi/m*Y/
concentration ON soil [pCi/m’] Equation 7-4
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Resuspension factors are determined empirically and depend on climatic conditions, types of
resuspension forces (wind, vehicular traffic), soil type and radionuclide.

Radionuclides may be introduced into plants directly from the soil. In this case,
concentration factors, as defined in Equation 7-1, are used. These values are also widely
tabulated. Ignoring radioactive decay, the radionuclide concentrations in soil resulting from,
for instance, irrigation can be calculated by assuming buildup of the inventory in the surface
layer (say top 10 cm) as more radioactivity is added by watering. The relevant data would
likely take the form of a concentration in the irrigation water, the flow rate of the irrigation
water was delivered to the soil and the area of the soil that was irrigated.

Calculation of airborne concentrations over space and time requires the use of exponentials
and will be discussed in that part of this book.

Once these types of calculations are done and understood for released radionuclides, earlier
model predictions can be validated, intakes by humans can be calculated and environmental
surveillance sampling programs can be designed to (1) take maximum advantage of key
pathway components that concentrate a released radionuclide to yield maximum sensitivity to
releases and optimum statistical significance of resulting data, and (2) have the most direct
interface with the ultimate human receptor, thus minimizing uncertainty in the final intake
and dose components of the calculation.

Problem 7-1

If a radionuclide is released at a concentration of 10 uCi/em’ at a rate of 1 liter/sec to a sewer
pipe with a flow rate of 10° liters/sec, at what concentration does the radionuclide reach the

treatment plant? If this radionuclide is concentrated 10° times in the treatment plant sludge,
what 1s its concentration in the sludge?

Step 1: Isolate the unknown variable:
Unit analysis.

Step 2:  Simplify the equation:
Unit analysis.

Step 3:  Validate the problem setup:

uCi / J uCi

concentration factor e . =~
[ of water 1000g | g of sludge
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Step 4: Plug in known quantities:

10uCi 10°cm’  sec 10 uCi ;
. . = 1.0—— in water
ent’ sec 10/ !

Step 5:  Solve for the unknown (assuming that the sludge has the same density as water):

1uCi Ci Ci
B 10s=1x10° 220 ! —10? &2 Zinsludge
/ [ 1000g g

Step 6: Conduct reality check:
Make independent order of magnitude estimate.
Problem 7-2
If a process vessel holding 10* Ci of radionuclide fails and in an hour releases 10% of its

inventory to a river flowing at 10 ° liter/minute, assuming complete mixing, what is the
radionuclide concentration in the river? If an aquatic plant exhibits a concentration factor of

10*, what is the radionuclide concentration in this plant?
Step 1: Isolate the unknown variable:

Unit analysis.
Step 2:  Simplify the equation:

Unit analysis.

Step 3: Validate the problem setup:

. CGi. . Ci .
(concentration factor « — inriver) = —in plant

Step 4: Plug in known quantities:

min 1 . Ci . Ci.o
1061. S0min =1.67x 10 7T= 1.67x 107" ; in river

102Cie 107" e
Step 5:  Solve for the unknown:

1.67x 10 10°=1.67x10 in aquatic plant
g g
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Step 6: Conduct reality check:
Make independent order of magnitude estimate.
Problem 7-3

If a radionuclide that exhibits a K, of 10’ is released to groundwater with a flow velocity of
2 m/year, how long would it take it to arrive a a groundwater well 1 km away?

Step 1: isolate the unknown variable:

K - velocity of groundwater

velocity of radionuclide

velocity of groundwater
Kd

velocity of radionuclide =

Step 2:  Simplify the equation:

The equation is already simplified.
Step 3:  Validate the problem setup:

Ratio is unitless.
Step 4:  Plug in known quantities:

2m

velocity of radionuclide = ml%

Step 5:  Solve for unknown:

m
velocity of radionuclide =2 x 107> —

Y
10°m s . .
0, 5 x 10° years for radionuclide to reach the well
Y

Step 6: Conduct reality check:

Make independent order of magnitude estimate.
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Problem 7-4

If a parcel of soil is contaminated to a level of 10° pCi/m* and exhibits a resuspension factor
of 107, what is the concentration in alfalfa in the downwind direction if the deposition
velocity is 10° and the transfer factor is 107?

Step 1: Isolate the unknown variable:

concentration in air

RF =
concentration on ground

concentration in air = RF e concentration on ground
Step 2: Simplify the equation:
The equation is already simplified.

Step 3: Validate the problem setup:

Step 4: Plug in known quantities:

concentration in air= 10 e 10°

Ci
—10 &
m
Step 5:  Solve for the unknown:
Cp=C,V,F,
10uCi Ci
= e 10%¢ 1072 = 102 =" in alfalfa
m g

Step 6: Conduct a reality check:

Make independent order of magnitude estimate.

7.9



Problem 7-5

What is the concentration in a cow’s meat if it eats 10” kg of hay contaminated at 1puCi/kg
and drinks uncontaminated water if the transfer factor is 107> ?

Step 1: Isolate the unknown variable:
Co=F.(C,Qp)
Step 2. Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:

uCi  d  uCi kg)
Lanadel R A et -
kg kg kg d
Step 4: Plug in known quantities:
C,,=107(1e10%)

Step 5:  Solve for unknown:

C.
C - ../J_E.
ap kg

Step 6: Conduct reality check:
Make independent order of magnitude estimate.,

Problem 7-6

What is the concentration in a garden vegetable if the contamination level of the soil is 10
pCi/kg and the concentration factor for the vegetable is 0.5?

Step 1: Isolate the unknown variable:

concentration in vegetable

CF =

concentration in soil

concentration in vegetable = CF e concentration in soii
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Step 2: Simplify the equation:
The equation is already simplified.

Step 3: Validate the problem setup:

Ci , . uCi
—— = ynitless ratio ®
kg kg

Step 4: Plug in known quantities:
concentration in vegetable = 0.5 10
Step 5:  Solve for unknown:
concentration in vegetable = 5 %g_
Step 6: Conduct reality check:
Make independent order of magnitude estimate.
Problem 7-7
What would the expected soil volumetric concentration be from irrigation of 100 m? of land
with water contaminated at 1 pCi/liter, if the irrigation rate is 10 liters/min, the wetting depth
is 10 cm and irrigation lasts for 4 hours?
Step 1: Isolate the unknown variable:
Unit analysis.
Step 2:  Simplify the equation:
Unit analysis.

Step 3: Validate the problem setup:

activity ® wetting rate ® time

concentration in soil =
area e depth
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Step 4: Plug in known quantities:
e oﬂ0240min
| min
100m? ¢ 0.1m

concentration in soil =

Step 5: Solve for unknown:

2.4010°4Ci _ 2.4010% 4Ci

concentration in soil = ; 3
10 m m

Step 6: Conduct reality check:

Make independent order of magnitude estimate.
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CHAPTER 8
WASTE MANAGEMENT

Waste management encompasses a wide variety of activities that are relevant to radiation
protection. A typical production cycle is shown in Exhibit 8-1. It includes producing a
product from input materials with recycle and waste management, but is robust enough to
illustrate decommissioning, etc., with very minor modification. Normally a facility’s waste
management plan is based upon the premise that no long-term buildup of waste inventory
will occur onsite. Therefore, provision is made to direct release waste; store, then release; or
treat, then ship waste; all with appropriate monitoring and/or sampling and analysis.

For radiation protection purposes, these possible waste management scenarios bring into play
the following areas that may require calculations:

classification of waste

» regulatory waste release criteria

o cffluent stream cleanup

e transportation regulations for shipping

e waste acceptance criteria for waste disposal

e license limitations on stored inventory

e estimation of stored inventory vs. time

e monitoring/sampling waste solids, liquids and gases in effluents

Waste management includes such a broad range of possible combinations of activities that
we will not attempt to illustrate a comprehensive treatment of the subject, but rather will
highlight those topics that are most relevant to the knowledge base required of a certified

radiation protection technologist.

Classification of Waste

Much of what can and cannot be done with waste is dictated by its classification.
Radiological wastes may be classified as high or low-level, transuranic or mixed waste.
Short definitions of these are given below. Legal definitions can be found in 40 CFR. Non-
radiological hazardous waste is referred to simply as “hazardous waste”.
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Exhibit 8-1.
Process Flow Design

@ Customer

Product

Treat || Ship || Dispose

put Lyl
Materials TOCCSSES

Waste | Release

Recycle

Store | Release

High-level Waste-contains fission products, traces of uranium and plutonium, and other
transuranic elements, which result from the first extraction cycle of chemical reprocessing of
spent fuel or spent fuel itself.

Low-level Waste-is all radioactive waste not classified as high-level waste, mixed or
transuranic waste, spent fuel or byproduct material.

Mixed Waste-is low-level waste that contains both radioactive and hazardous components.

Transuranic Waste (TRU)-is waste contaminated with alpha-emitting radionuclides with half-
lives of greater than 20 years, such as plutonium and americium, in concentrations greater
than 100 nCi per gram of waste.

Historically the high, intermediate and low-level definitions were based on the dilution that
would have to be accomplished for the waste to be released to the environment. Low-level
wastes were those that required a dilution of no more than 10°, intermediate 10° < dilution
factor < 10°, and high level > 10°. These values are no longer applicable, but they give some
technical context to the present legalistic definitions. Mixed and transuranic waste are newer
concepts and have less tested historical bases. The classification of a waste or waste stream
will determine which other regulations are applicable to its management. For example, low-
level solid waste disposal is governed by 10 CFR61, whereas high-level waste disposal is
governed by 10 CFR60, or applicable government agency regulations.
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Problem 8-1

What class of waste would describe a 55 gallon drum full of soil contaminated with 5 Ci of
Pu-239?

Step 1: Isolate the unknown variable:
Multiplicative model.

Step 2: Simplify the equation:
Multiplicative model.

Step 3: Validate the problem setup:
Will be done while solving the problem.

Step 4: Plug in known quantities:

m’ 10°cm’®  2g 417% 10°
. . =4.
2.64x10°gal  m*  cm’ X108

55 gale

Step 5:  Solve for the unknown:

5x10° nCi , hCi nCi )
————=1.2x10* —>100—— .. Transuranic (TRU) Waste
417x10°g g g

Step 6: Conduct reality check:
Make independent order of magnitude estimate.

Regulatory Release Criteria and Waste Stream Cleanup

Many extremely low level waste streams can be released directly to the environment. The
permissible concentrations are waste matrix and radionuclide specific and are promulgated in
10 CFR20. If a waste stream does not conform to the requirements for direct release, then
treatment or storage for decay may be applied before release, or shipping offsite for disposal
may be required.

Tt is often necessary to remove patticulate matter from airborne effluent streams before
release to the atmosphere. This is most often accomplished through filtration. Since the
filtration efficiencies that are required for many radiation protection applications are so high
(>99.99%) it has been found to be desirable to define a more “user friendly” filtration
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effectiveness quantity than filter efficiency. The quantity most often used as a measure of
filter merit is called “decontamination factor”, (df). This quantity is defined by the equation:

df=100/(100 -E) Equation 8-1
where,
E = filter efficiency [%]
For example, a filter with an efficiency of 99.9% would pass one particle per thousand and
would have a df of 10°, in contrast to a filter with a similar looking efficiency of 99.99%
which has a df of 10*.
If the contamination in a waste stream is radioactive and short lived, perhaps storage and
decay is an acceptable waste management strategy. Radiological decay during waste storage
is radionuclide specific and is described by a quantity called “half-life”, that was briefly
mentioned in the Measurement of Radiation chapter in the “specific activity” discussion.
Half-life is defined as the time it takes a radionuclide to decay to ¥ its original activity. An
algebraic way to state-this definition is:

A=A,/2" Equation 8-2
where,

= the number of half-lives that separate A and Ay in time.

Ap= the original activity of the source
A =the activity of the source after the passage of n half-lives

Problem §-2

If the concentration limit for releasing a radionuclide to a sewer system is 2 x 10 ° uCi/cm *,
could a waste stream flowing at 100 liters/min containing this radionuclide at a concentration
of 1 uCi/liter be released at a rate of 0.1 liter/min?
Step 1: Isolate the unknown variable:

Multiplicative model.

Step 2:  Simplify the equation:

Multiplicative model.
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Step 3: Validate the problem setup:
Will be done while solving the problem.

Step 4:  Plug in known quantities:

1uCi 1077 107" uCi
. ==
{ min min

10 uCi min 107 uCi
® B
min 100/ /

10°uCi 1 107 uCi
° =
! 10°em’ cm’

Step 5:  Solve for the unknown:

107 uCi B 2x107° uCi

cm3 CI’I’I3

.. waste can be released

Step 6: Conduct reality check:
Make independent order of magnitude estimate.
Problem 8-3
If a volume of radioactive gas being held up for decay in pressurized tanks has four times the
release limit concentration at atmospheric pressure, how many half-lives will it need to be

held before it can be released to the atmosphere?

Step 1: Isolate the unknown variable:

Step 2:  Simplify the equation:
n=4a
Step 3: Validate the problem setup:

Ratio is unitless.
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Step 4: Plug in known quantities:
h= 3

Step 5:  Solve for the unknown:
n =2 half-lives

Step 6:  Conduct reality check:
Check arithmetic.

Problem 8-4

What is the decontamination factor of a filter of 99.995% efficiency?

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Isolate the unknown variable:

100
df=
100-F
Simplify the equation:

The equation is already simplified.
Validate the problem setup:

Ratio is unitless.

Plug in known quantities:

100

4= 15099995

Solve for the unknown:
df=2x10*
Conduct reality check:

Check arithimetic.
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Problem 8-5

Into what volume of uncontaminated liquid effluent would 100 liters of waste contaminated
to 1 uCi/l have to be diluted to meet a 10 * pCi/em * release criterion?

Step 1: Isolate the unknown variable:

1uCi

100 /= 100 puCi

[ 107 uCi

3

10° pCie

V[l] 10em® om

Step 2:  Simplify the equation:

1
V=107 7501

Step 3: Validate the problem setup:

3
cm

I =uCie

[ ]
3

em®  uCi
Step 4: Plug in known quantities:
See Step 2.
Step 5: Solve for the unknown:
V =107 liters
Step 6: Conduct reality check:
Make independent order of magnitude estimate,
Problem 8-6

What is the concentration of an airborne waste stream contaminated to 1 uCi/cm * after it
passes through a filter of df=10"?
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Step 1: Isolate the unknown variable:

g 100
100—E
100

E=-—4 +10
10

Step 2:  Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:
Ratio is unitless.
Step 4:  Plug in known quantities:
E = 99.99% = Transmission = 10 2% or 10~

. —4 .
1/463’1 . 10— 10 ,Lng
cm cm

Step 6: Conduct reality check:
Make independent order of magnitude estimate.

Problem 8-7

What increase in the uCi/cm * for a solid waste occurs when it is compacted from 80 gallon to
0.5 gallon in volume? What is the change in nCi/g?

Step 1: Isolate the unknown variable:

) activity,
Concentration, =
volume,
. activity, o . .
Concentration , = (note that the activity does not change with compaction)

volume,
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Step 2:  Simplify the equation:

volume,

Concentration , = Concentration ; e
volume,

Step 3: Validate the problem setup:
Ratio is unitless.
Step 4-5:Plug in known quantities:

80
05 160 .. 160 times increase in uCi/cm >

No change in pCi/g because there is no change in the mass.
Step 6: Conduct reality check:
Check arithmetic.

Transportation Regulations

Transportation regulations are to be found in 49 CFR. These regulations govern what type of
container must be used to transport wastes with specific characteristics, how much waste can
be transported in each container, how the container must be marked, and the radiological
conditions exterior to the container, including establishing the appropriate transport index.

Problem 8-8

What would a portable detector with a correction factor of 2 read at the surface of a vehicle
transporting radioactive material as an exclusive use vehicle if the radiation field there was at

the permissible limit?
Step 1: Isolate the unknown variable:
Limit = 200 mR/hr

actual

reading

actual
CF

reading =
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Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

Ratio is unitless.
Step 4: Plug in known quantities:

. 200
reading = >

Step 5:  Solve for the unknown:
reading = 100 mR/hr
Step 6: Conduct reality check:
Check arithmetic.
Problem 8-9

Calculate the transport index of an unshielded source of 1 g of Cs-137, half-life of 30 years, if
1 Ci of Cs-137 gives rise to a radiation field of 0.33 R/hr/Ci @1meter?

Step 1: Isolate the unknown variable:

Transport index is equivalent to the maximum radiation level in mR/hr @ 1 meter.

1 N
TRy =N=4.39x10 atoms
02x

A=2AN

_ 0.693
(30y ©3.15x107 sec)/ y

©439x10'=3.22x10" /sec

3.22x 10" /sec o 87 Ci1

[
37x10° 57
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Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

Will be done while solving problem.
Step 4-5:Plug in known quantities:

0.33R R
-~ 29 — = 29,000 = Transport Index
hrCi hr

87Cie

Step 6: Conduct reality check:
Make independent order of magnitude estimate.

Waste Acceptance Criteria

The waste acceptance criteria (WAC) establish the characteristics the waste received at a
disposal site must possess, or not possess, to be permanently emplaced. Typical WAC
categories for low level radioactive waste are given below.

Waste form

» combustability

e gas generation

» immobilization

+ explosives and compressed gases
s pyrophorics

e« toxic and corrosive materials

o sludges and frec liquids

Container
e structure
e weight

» dimensions

« surface dose rate

s thermal power

o labeling

e surface contamination
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WAC also exists for mixed, transuranic and high level radioactive wastes. These generally
address the same basic points but are very specific to the waste type and available modes of
permanent disposal.

Problem 8-10

Can 3 m’ of soil contaminated with 100 Ci of Th-232 be sent to a disposal site that has a 1
mCi/kg limit on waste it can dispose?

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Isolate the unknown variable:

Multiplicative model.

Simplify the equation:

Multiplicative model.

Validate the problem setup:

Will be done while solving the problem.

Plug in known quantities (assuming a soil density of 2 g/cm’ ):

10’ mCi m em’ 10°g  50mCi
L J L] L] =

2m’  10°cm’  2g kg kg

Solve for the unknown:

S50mCi  1mCi .
>—— . waste cannot be sent for disposal

kg kg

Conduct reality check:

Make independent order of magnitude estimate.

Problem §-11

If a distributed source of a radionuclide with half-life of 1 year and mass number of 100 gives
an exposure rate of 20 mR/hr/mCi, what is the maximum mass of nuclide that can be shipped
for disposal if the limit is 100 mR/hr?
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Limitations on Stored Inventory and Inventory vs. Time

Isolate the unknown variable:

100mR mCihr
®
hr 20mR

=5 mCi

Simplify the equation:

Multiplicative model.

Validate the problem setup:

Will be done while solving the problem.
Plug in known quantities:

A=2AN

37x10°dis  0.693 ly N
= °
mCi sec ly  315x107 sec

5mCie

N =8.41 x 10** atoms

& _N
gmw N,
g _ 841x10°

100 6.02x10%

Solve for the unknown:
g=14x10"g

Conduct reality check:

Make independent order of magnitude estimate.

As discussed previously in this chapter, in many cases, short-lived radioactive wastes do not
conform to the requirements for immediate release, but can conform after a short onsite
holdup/storage period of decay. For longer-lived radionuclide wastes that are generated fairly
slowly in a facility, they may be stored onsite until a full load can be accumulated for
shipment to a disposal site. In both cases, inventories may be limited by external license
requirements or facility Operational Safety Requirements. With the possibility of continuous,
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simultaneous, additions and removals from the stockpile, frequent inventory evaluation is
necessary to ensure compliance.

Problem 8-12

If waste is accumulated in a facility at the rate of 100 pCi/day, how many days can waste be
stored 1f the license limit on inventory is 100 mCi, ignoring radiological decay?

Step 1: Isolate the unknown variable:
Multiplicative model.
Step 2: Simplify the equation:
Multiplicative model.
Step 3:  Validate the problem setup:
Will be done while solving the problem.
Step 4: Plug in known quantities:

1d  10°uCi
®
100uCi mCi

100mCi » = time

Step 5:  Solve for the unknown:

Time = 10 days
Step 6: Conduct a reality check:

Make independent order of magnitude estimate.
Monitoring
Characterization of wastes and verifying operational conditions require monitoring and/or
sampling. These activities can take many forms, depending on the ultimate objectives of the
measurements and the type of waste being measured. Methods representative of those

available for use on solid, liquid, or gaseous radiological wastes or radiological conditions are
discussed below.

SOLIDS-Solid wastes are usually the most difficult to adequately characterize because of

their heterogenity. Since drawing conclusions on a large volume of waste from a small
sample of that waste requires that the sample be representative of the whole, this aspect
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warrants special attention. Often the only practical solution to sampling is the application of
a statistical approach.

Solid waste release criteria may be in terms of either volume or surface area. Volumetric
characteristics can usually be more accurately assessed, if even by destructive examination,
than surface characteristics because of often-encountered irregular surfaces with cracks and
crevices that hamper both determination of the surface area and the radiological content.

Problem 8-13

Does a flat piece of contaminated steel plate meet the release criterion of 5000 dpm/100
em ? if a 70 cm? probe with an efficiency of 25%, in contact with the surface, gives
1000 ncpm?

Step 1: Isolate the unknown variable:

1000ncpm
0.25ncpm/ dpm

= 4000 dpm

4000dpm _ 57.1dpm
70cm’ cm’

Step 2: Simplify the equation:

Multiplicative model.
Step 3: Validate the model setup:

Will be done while solving the problem.
Step 4: Plug in known quantities:

57 1dpm

cm®

e 100cm?=5.71x 10° dpm

Step 5:  Solve for the unknown:
5.71 x 10* dpm>5000 dpm .". no release is allowed
Step 6: Conduct a reality check:

Make independent order of magnitude estimate.
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Problem 8-14

What is the volume and mass based concentration of 10 Ci of contaminated soil in a 55
gallon drum?

Step 1:  Isolate the unknown variable:
Multiplicative model.

Step 2: Simplify the equation:
Multiplicative model.

Step 3: Validate the problem setup:
Will be done while solving the problem.

Step 4:  Plug in known quantities:

10Ci 2.64x10°gal  m’ 18% 105 Ci
. ° =4,
55gal m’ 10°cm’ * cm’

Step 5:  Solve for the unknown:

C. 3 C.
48x107° —e T=24x10" =
cm 2g g

Step 6: Conduct a reality check:
Make independent order of magnitude estimate.

LIQUIDS-Liquid wastes can be continuously monitored, proportionally sampled, or grab
sampled, depending upon the specific situation and desired use for the information. One
approach to continuous monitoring is the submersion of a protected radiation detection
chamber into the liquid waste stream. Since the usual units on waste release criteria are
activity per unit volume, the detector must be calibrated to read in units of concentration. As
for the solids, 1t is helpful to getting a representative sample, if good mixing has occurred in
the waste stream before the measurements are made. The calibration process then entails
determining the net counts per minute per unit concentration from using calibrated solutions
in the same geometry as the waste stream measurements will be made. A calibration curve
can be developed which relates ncpm to concentration, as could have been done for
converting ncpm to dpm as discussed in the Measurement of Radiation chapter. From
continuous monitoring results and waste stream flow data, compliance with both
concentration and total release requirements can be assessed. Similar results can be obtained
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by continuously extracting a small fraction of the waste stream for either on-line or laboratory
analysis.

If the concentration and waste stream flow characteristics are fairly constant, statistically
valid data can be obtained through a process called ‘proportional sampling”. As this term is
normally used, this means a periodic, but discontinuous, sample of volume proportional to
the flow volume of the waste stream. Given the assumption of stable waste stream
characteristics, compliance with both concentration and total release requirements can be
assessed by this means.

A less statistically valid sampling approach for a flowing liquid waste stream is called “grab
sampling”. For poorly mixed, unstable waste streams this approach is inappropriate. For
well-mixed, stable and contained liquid wastes its validity is much better.

A grab sample is defined as a manually collected single portion of waste. This type of
sample reveals the characteristics of the waste at the time the sample was taken. Average
characteristics over longer periods of time can be achieved by compositing grab samples
taken over a period of time. If frequent grab samples are taken at intervals determined by a
waste stream flow rate, then this technique becomes similar to proportional sampling.

Problem 8-15

If a 1% continuous sample of a liquid waste stream, flowing at 10 liters/min is desired, at
what rate would the sample need to be withdrawn from the waste stream?

Step 1: Isolate the unknown variable:
Multiplicative model.
Step 2:  Simplify the equation:
Multiplicative model.
Step 3: Validate the problem setup:
Will be done while solving the problem.
Step 4: Plug in known quantities:

o,
— 1077 =107 —
min min

Step 5: Solve for the unknown:

See Step 4.
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Step 6: Conduct reality check.
Make independent order of magnitude estimate.
Problem 8-16

If a submerged radiation detector is calibrated to read 1000 ncpm per pCi/l, at what ncpm
level should it be alarmed to indicate a concentration limit of 1 pCi/cm* ?

Step 1: Isolate the unknown variable:

1000ncpm _ Xncpm
uCifl 1uCi/1071

Step 2:  Simplify the equation:

1
X = 1000
ncpm . 107

Step 3: Validate the problem setup:

Ratio is unitless.
Step 4:  Plug in known quantities:

See Step 2.
Step 5:  Solve for the unknown:

Xnepm=10°
Step 6: Conduct reality check:

Make independent order of magnitude estimate.
GAS-Air samples can be taken with a variety of objectives in mind. These objectives
include: health oriented, environmental source oriented, general movement oriented, public
relations oriented, special projects oriented. Each objective can influence the details of how
monitoring/sampling are done, how the data are generated and how the data are used. Only
representative approaches that might be useful to radiation protection technologists will be

included here.

As with liquids, representative samples are obtainable, but not automatic. Assuring a
representative, continuous air sample is especially difficult in sampling airborne contaminant
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particles that are moving at high velocities, as in exhaust ducts. For an air sample to be
representative of an effluent stream it must (1) have a gas density equal to the average gas
density of the cross section of the effluent stream, (2) contain a pollutant concentration equal
to the average concentration of the cross section of the effluent stream, (3) contain a pollutant
composition equal to the average composition of the cross section of the effluent stream. The
first two of these requirements can be met by proper placement of the sampling probe in the
effluent stream.

Sampling at a point of average gas density and average pollutant concentration by itself will
not ensure representative sampling. The velocity of the sample as it enters the sampling
probe, if it is different from the gas velocity in the stack, can alter the amount of particulate
collected.

When gas is drawn into the nozzle with a velocity less than the waste stream velocity, a
number of streamlines diverge so that they do not enter the nozzle. The fine particulates are
transported along the deflected streamlines, but the larger ones, because of their greater
inertia, leave the streamlines during the curvature and enter the nozzle. Hence, the volume of
gas extracted will contain more large particles than the same volume contains in the waste
stream. Therefore, the particulate matter collected from the gas sample would present a false
picture regarding particle size distribution.

When gas is drawn into the nozzle with a velocity greater than the waste stream velocity, a
number of streamlines converge and crowd into the nozzle. The fine particulates follow the
deflected streamlines, but the larger ones continue along their original straight paths and miss
the nozzle completely. Therefore, the gas sample will contain fewer large particles than
actually exist in the same volume in the waste stream, and the results of particle size analysis
will be false.

When gas is drawn into the nozzle with a velocity equal to the waste stream velocity the
streamlines will not be disturbed. As a result, the gas sample will contain the same number
of large and small particulates that actually exist in the same volume in the waste stream.
Therefore, the gas sample will have the same particulate concentration as the parent stream
and the results of particle size analysis will be true. This condition, when the velocity of the
gas being withdrawn from the effluent stream equals the velocity of the effluent stream, is
essential for the accurate determination of the concentration of particulate matter and particle
size distribution in the effluent stream. Such sampling is called “isokinetic sampling” and is
determined by the diameter of the sampling probe and the sample withdrawal rate.

Problem 8-17

If the airflow velocity in a duct is 1 m/sec, at what rate would a sample have to be withdrawn
from the duct through a 1 cm diameter tube for the sampling to be isokinetic?
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Step 1: Isolate the unknown variable:

area=7nr’=ne0.5=0.785 cm?

2

0.785cm’ e 10:” >=7.85x10"m?
cm

V [m* /sec] o =1 [m/sec]

7.85x10° m”
V=7.85x%x10"° m/sec
Step 2: Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:
See Step 1.
Step 4: Plug in known quantities:
See Step 1.
Step 5:  Solve for the unknown:
See Step 1.
Step 6: Conduct reality check:
Make independent order of magnitude estimate.
Problem 8-18

If a particulate sample of 24 hours obtained isokinetically at 1 m* /min yields a result of
10° ncpm on a detector with 10% efficiency, what is the particulate concentration in the
waste stream?

Step 1: Isolate the unknown variable:

ncpm

F=
¢ dpm
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

. )
107 = Tom = dpm =10
pm

pCimin

=455x%x 10° pCi
2 2dis X TP

10*dpm e

Simplify the equation:

Multiplicative model.

Validate the problem setup:

Will be done while solving the problem.
Plug in known quantities:

hr min

4,55x 10> [pCi] e
Solve for the unknown:
 PU

concentration =3.16 x 10 3
cm

Conduct reality check:

. AT I
24hrs  60min 1m” 10°cm

3
m

= concentration

Make independent order of magnitude estimate.
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CHAPTER 9
EXPONENTS AND LOGARITHMS

This chapter presents mathematical basics on exponents and logarithms. The algebra chapter
presented earlier in the book (Chapter 2) provided an introduction to exponents and
logarithms. Exponents and logarithms represent shorthand mathematical expressions. These
shorthand expressions simplify calculations. This chapter will discuss what these shorthand
expressions mean and how to readily manipulate the expressions. Included in the discussions
will be scientific notation, a fundamental in performing any type of scientific calculation, and
natural logarithms, which provided the mathematical basis for a number of health physics
applications.

Exponents

Let us look at a multiplicative expression, y =x ¢x #xex. The expression can be simplified
to the expression y = +*. In this shorthand expression, the value 4 is the exponent and x is the
base. The two expressions are equivalent. The exponent is 4 in this case since the original
expression has four x’s multiplied together. When you multiply numbers with the same base,
you add the exponents and keep the base the same. Again, our original expression can be
written as:

[
y=Xx ex ex ox!

To arrive at the exponential expression, you keep the same base, x, and add the exponents,
1+1+1+1, or 4.

Conversely, when you have an expression that divides two numbers, you subtract the
exponents. For example, take the following expression:

5

X

y=—F=X —-X =X =X
x

Since the two exponential expressions have the same base, x, then the simplified expression

52
isx’?, orx’.

If you have an exponential expression, raised to a power, then you multiply the exponents.
For example, let’s look at the expression representing the square of the square root of x:

y=G" =5 2_ 1
In this case, the expression is simplified to y = x! (or simply x), since the product of %; times
2is 1. If you have a multiplicative expression raised to a power, then all the factors are
raised to that power. For example:
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y = (az ° x1/3)2

202 . 1/3e2 2/3

. . . . 4
This expression simplifies to y = a X or,y=a" ex"”

Examples

Simplify the following expressions using exponential notation:

1. y=a 0a20aoaoa
2. y=x+xtx

3 y=(b3)1/2

4, y=x’

5.y =x"d’

Step 1: Isolate the unknowns, or variables, on one side of the equation and the constants on
the other side of the equation.

The expressions are already in this form. Although there are variables on both sides
of the equations, we are looking for a simplified expression for y.

y=aedeaeaea

y=xtx+x
y :(bj)]/z

= 243
y=x/
y =x"/d’

Step 2:  Simplify the equation to the form x = C, where x is the unknown and Cis a
constant. C is then the solution to the unknown.

y= a1+2+1+1+1 — a6
y=x+x+x=3x
— 312 _ 30
y=(8)"”=b
_ 2,3 -
y=x/ =x
y =x'/a =x'/d

Step 3:  Verify the solution by putting the solution for x into the original equation to check
to see if the equality is correct.

We do not have values for our dependent variable (that is the variables g, x, and b)
to plug into the equation. To verify the solutions, you could select values for the
dependent variables. For example, let @ = 2 for the first expression. You would
then gety =2 ¢ 2’0 20 20 2, or, 2 e 40 20 2¢ 2, which equals 64, 2°is also 64.v
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Note that for #2, the answer is 3x, not x’. The x’s are added to gether in the
problem, not multiplied together, so the exponents are not added. Also, in #5, the
bases in the numerator (x) and denominator (a) are different, so the exponents are
not subtracted.

Scientific Notation

A special application of exponents is in scientific notation. Scientific notation is a shorthand
way of writing large number using 10 as a base. Here are values of base ten raised to whole
number exponents:

Number Exponent of 10
1 10"
10 10’
100 10°
1,000 10°
10,000 10°
100,000 10°
1,000,000 10°
0.1 10
0.01 10
0.001 10~
0.0001 107
0.00001 10°
0.000001 10°

If you follow the pattern in the table above, you see that for positive powers of 10, the
exponent value is equal to the number of digits to the right of the ﬁrst number. For example,
the number 10,000 has four zeros and the exponential of 10 is 10°. For fractions of 10, the
exponent value is equal to the negative of the number of digit after the decimal place
(including the 1). For example, 0.001 has three digits after the decimal point and the
exponential of 101s 107, 3

A number is in scientific notation when it is expressed as the product of a decimal number
between 1 and 10 and some integer power of 10.

The steps for converting a number to scientific notation are as follows:
Step 1: Place the decimal immediately to the right of the lefi-most non-zero number.

Step 2: Count the number of digits between the old and new decimal point. This is the
exponent of 10.

Step 3: If the decimal is shifted to the left, the exponent is positive. If the decimal is shifted
to the right, the exponent is negative.
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Step 4:  Write the expression a x 10", where a is the number with the decimal immediately
to the right of the lefi-most non-zero number (Step 1) and n is the number of digits
the decimal was shifted (Step 2), with the appropriate sign (Step 3).

For our first example, let’s take 4,611,000:

Step 1: Place the decimal immediately to the right of the left-most non-zero number:
4.611000

Step 2: Count the number of digits between the old and new decimal point. 6 (remember
that 4,611,000 is the same as 4,611,000., so you move the decimal from the end
six places to after the 4.)

Step 3: If the decimal is shifted to the left, the exponent is positive. If the decimal is shifted
to the right, the exponent is negative. The exponent is positive.

Step 4:  Write the expression a x 10", where a is the number with the decimal immediately
to the right of the left-most non-zero number (Step 1) and # is the number of digits
the decimal was shifted (Step 2), with the appropriate sign (Step 3).
4.611 x 10° (you can ignore the last three zeros).

For our next example, let’s take 0.00222:
Step 1:  Place the decimal immediately to the right of the left-most non-zero number: 2.22
Step 2: Count the number of digits between the old and new decimal point. 3

Step 3: If the decimal is shifted to the left, the exponent is positive. If the decimal is shifted
to the right, the exponent is negative. The exponent is negative.

Step 4:  Write the expression a x 10", where a is the number with the decimal immediately
to the right of the lefi-most non-zero number (Step 1) and # is the number of digits
the decimal was shifted (Step 2), with the appropriate sign (Step 3).
2.22x107

The table below lists values in the first column and their corresponding scientific notation in
the second column. You can use the values in the table to practice converting numbers into
scientific notation. Also, most calculators can display numbers in scientific notation or
decimal forms by toggling a setting. Refer to your owner’s manual to determine if your
calculator can be set to express numbers in scientific notation.
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Number Scientific Notation
131 1.31 x 10°
11.134 1.1134 x 10’
134,443 .3 1.344433 x 10°
20,000,000 2.x 107
456.08 4.5608 x 10°
6,023,000 6.023 x 10°
0.0034 3.4x 10~
0.0000555 555x 107
0.009 9.x 10”
0.56 56x%x 107
0.000088 8.8x10°

4 4.x 10"
2332 2.332x 10°

Logarithms

Any number can be expressed as any non-zero number raised to an exponent. The exponent

and the base number define a logarithm. For example:

In example #1, the base is 4 and the exponent is 2. In example #2, the base is 2 and the
exponent is 4. In example #3, the base is 16 and the exponent is 1. In example #4, the base is
10 and the exponent is 1.2. In example #5, the base is 3 and the exponent is 2.524. In
example #6, the base is 1.7411 and the exponent is 5. Finally, in example #7, the base is
2.718281828459042 (you will see later in the chapter that this number has some

Nk W=

42 =16
2*=16

16' =16
1012 =16
32524 _ |6
1.7411° =16

2.718281828459042%77% = 16

significance!) and the exponent is 2.7726.

A logarithm is the exponent, given a specific base. Using our first example above, the
logarithm of 16 to the base 4 is 2. This expression is written as logy 16 = 2. The following

lists the expressions for the other six examples:

N L AL

log, 16 =4
logis 16 =1
10g10 16=1.2
logs 16 = 2.524
log1.741116=5

logz.718281828450042 16 = 2.7726
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Example #3 shows that the log of any number to the base of that number is 1. This rule
makes sense, since we know that any number raised to the power of 1 equals that same
number. Example #4 also represents a special case. Base 10 logarithms are commonly used
to express numbers. Often, the base is not written in base 10 logarithms. In this case,
example #4 would become log 16 =1.2.

Many scientific calculators have a base 10 logarithm feature. If you enter 16 into your
calculator and it the “log” button, the result should be 1.2. These calculators also have an
anti-logarithm feature. An anti-logarithm answers the question “What is the result of raising
a given base to an exponent?” In example #4, the anti-logarithm answers the question “What
is the result of raising base 10 to the 1.2 power. If you enter 1.2 into your calculator and
press the “10™” button (or maybe the “INV” and then “log” buttons), you should get the result
of 16. Please consult the owner’s manual for your calculator to determine the base 10
logarithm function.

Natural Logarithms

As we hinted at above, example # 7 1s also a special case. In science and engineering, the
value 2.718281828459042 is a common logarithm base. To avoid having to write out this
number for each expression, the symbol e has been chosen to represent the number.

Logarithms to the base e are called natural logarithms and log, is further abbreviated as In.

As with base 10 logarithms, most scientific calculators have a natural log feature. If you
enter the value 16 and press the “In” key, the result should be 2.77 (our answer in example
#7). Also, scientific calculators can take anti-natural logarithms. If you enter 2.7726 and
press the “¢*” key, you will get 16. Please consult the owner’s manual for your calculator to
determine the natural logarithm function.

As you will see in chapters in this book on radioactive decay (Chapter 10) and interaction of
radiation and matter (Chapter 11), natural logarithms play an integral part in solving
problems. In most cases, it is the anti-natural logarithm that is important. In other words,
you will need to answer the question "What is the result of raising e to the power of ...?” In
these problems, the natural logarithm base will be raised to the power of the product of the
decay constant and a time period or the product of an attenuation coefficient and a material
thickness.
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CHAPTER 10
RADIOACTIVITY AND RADIOACTIVE DECAY

As with most things in nature, atoms want to be in their most stable state. An unstable atom
changes its nuclear state through radioactive transformation, or decay. This transformation
takes place when an atom converts neutrons to protons, or protons to neutrons, and then
releases the excess mass or energy from the nucleus. This emission of particles or energy
from the nucleus is called radiation. Radiation can be in the form of particles or
electromagnetic energy waves. These emissions occur randomly as each atom tries to achieve
a more stable state. The property of certain nuclides to spontaneously emit radiation is called
radioactivity. This emission is called radioactive decay.

Following a transformation the nucleus is usually more stable than it was, but it may not be
completely stable. So, another transformation will take place in which the nucleus will again
emit radiation. The amount of energy given off and the type of emission that occurs will
depend on the configuration of the nucleus immediately before a specific transformation
occurs. The original configuration of the nucleus (that is, before the decay) is called the
parent and the configuration after the decay is called the daughter. If the daughter
radionuclide is unstable, or radioactive, then it will decay to a different daughter product.
This continuing decay of daughter products results in a radioactive decay chain, or series.

Radioactive decay of a radionuclide is characterized by three things: the types of radiation
emitted, the energies of the radiation, and the rate at which the nuclide decays. These three

characteristics, when grouped together, comprise a unique fingerprint for the radionuclide.

Types of Radiation

Radionuclides transform by a variety of methods, depending on their degree of instability and
configuration of the nucleus. These decay methods include alpha emission, beta emission,
gamma ray emission, positron emission, and orbital electron capture.

Alpha Emission. In alpha radiation emission, an unstable radionuclide emits an alpha
particle, a highly energetic helium nucleus. The alpha particle is comprised of two protons
and two neutrons. The daughter product has an atomic mass number of four less than the
parent’s atomic mass number and atomic number (number of protons) two less than the
parent’s atomic number. For example:

226 4 222
wRa — ,a + ol

Alpha particles are released from radionuclides that have low neutron to proton ratios. Alpha
particles are energetic. Most alpha particles have energies greater than 3.8 MeV. Alpha
particles are emitted in discrete energies. It is possible to identify and quantify an alpha-
emitting radionuclide by measuring the energy of the emitted alpha particles.
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Alpha particles cause dense ionizations as they move through mater. As such, their energy is
relinquished rapidly and they travel only short distances. A piece of paper can stop an alpha
particle.

Beta Emission. A beta particle is an electron that is emitted from the nucleus of a
radionuclide. Beta particles are emitted from radionuclides with an excess number of
neutrons. A neutron is converted to a proton and an electron and the electron is emitted from
the nucleus. The atomic weight of the daughter product is the same as the parent, but since a
proton is formed from a neutron, the atomic number is increased by one. For example:

f‘H — fl]e + 23He

The radionuclide will emit a beta particle with a continuous range of energies for 0 to a
maximum beta energy. The maximum energy depends on the radionuclide. The average
energy of the emitted beta particle is approximately one-third the maximum energy. The
radionuclide will also emit neutrinos, particles with no mass, to make up for the additional
energy (energy of the emitted beta + the energy of the neutrinos equals the maximum beta

energy).

Beta particles are more penetrating then alpha particles. They are stopped by a thick sheet of
plastic or thin sheet of metal.

Gamma Ray Emission. Gamma rays are electromagnetic energy originating from the nucleus
of the radionuclide. Gamma rays have no mass and no charge. When emitted, they do not
alter the atomic weight or atomic number of the radionuclide. Gamma radiation is emitted
when a radionuclide must release excess energy, yet has a stable ratio of protons to neutrons.
For example, many alpha emitting radionuclides emit particles of different energies. The
radionuclide will emit a gamma ray to release any excess energy not carried away by the
alpha particle. Likewise, many beta emitting radionuclides also emit gamma rays. These
gamma rays are emitted at discrete energies. Gamma spectroscopy systems can measure the
energy of the emitted gamma ray and determine what radionuclides are present.

Gamma rays are the most penetrating ionizing radiation. It takes materials such as lead,
concrete, and water to stop gamma rays.

Positron Emission and Orbital Electron Capture. Positron emission is similar to beta
emission. Instead of releasing a negatively charged electron, a neutron-deficient nucleus
emits a positively-charged electron. Unlike negatively-charged electrons, positrons do not
exist in nature. Once released, they interact with negatively-charged electrons and are
annihilated. This annihilation is accompanied by the formation of two 0.51 MeV gamma
rays. Alternatively, this neutron-deficient radionuclide may capture an orbital electron. This
orbital electron is combined with a proton to convert that proton to a neutron.
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Radioactive Decay

The process in which a radionuclide emits one or more of the types of radiation discussed
above is radioactive transformation or radioactive decay. Radioactive decay is a random
event. It is not known when any specific atom of a radionuclide will decay. As with other
random events, all we can do is establish properties of a population of atoms. To illustrate
this point, let’s look at a gram of radium-226 in a container in front of us. Radium-226 has
the following properties:

Half-live of 1,602 years

Radiation emitted includes alpha particles and gamma radiation
Atomic weight of 226, or 226 grams in one mole of Ra-226
Daughter product is radon-222, which is radioactive

¢ & & O

Before we go any further, we need to look at a basic concept for high school chemistry. One
mole of any element has 6.0247 x 10% atoms, Avogadro’s number. In the case of Ra-226,
there are 6.0247 x 10% atoms in 226 grams of Ra-226. To find the number of atoms in one
gram of Ra-226, we divide Avogadro’s number by 226. The result is that there are 2.67 x
102" atoms in our container of Ra-226 when we start. Now, as we mentioned earlier, we
cannot predict which of those 2.67 x 10*' atoms will decay, or transform into Rn-222. All we
know with any certainty is that half of all the Ra-226 present in our container will transform
in 1,602 years. The half-life of Ra-226 is 1,602 years and as the name implies is the length of
time it takes for one half of the atoms present to undergo the radioactive decay process.

Different radionuclides decay at different rates. These decay rates depend on the half-life of
the radionuclide. In our example above, the Ra-226 has a half-life of 1,602 years while the
its daughter product, Rn-222, decays with a half-life of 3.05 days. The rate of decay of a
radioactive substance constitutes the quantity of radioactivity, or activity, in that substance.
The definition of activity refers to the number of transformations per unit time. The special
unit for activity is the Curie (Ci). One Ci is equal to 37 billion (3.7 x 10'%) transformations
per second. For radioactive material, it is more common to talk in terms of activity than in
terms of mass. You will more often deal with 1 microcurie of Co-60 instead of 1 microgram
of Co-60. To determine the activity associated with a given number of atoms of a radioactive
element, the following formula is use:

A = AeNe( Equation 10-1
where,
A = activity, in curies
A = radioactive decay constant
N = number of atoms of the radioactive element present
C, = constant to convert to curies, 2.7 X 10! curies per transformation
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The radioactive decay constant, A, is the ratio of the natural logarithm of 2 to the half-life of
the radionuclide:

In 2
A= — Equation 10-2
5,

The natural logarithm of 2 can be approximated at 0.693. To verify this approximation, you
can enter 2 in your calculator and press the “In” function key.

Problem 10-1
What is the activity in 1 gram of Ra-226?
Step 1: Isolate the unknown variable:

A = AeNe(
In 2
Ly

Step 2: Simplify the equation:
Substitute the expression for the decay constant onto the equation:

4 = 1112.N.Cl

1/2

Step 3: Validate the problem set-up:

In2

—————— o N (atoms) e C, (curies per transformation) v’
T}, (sec)

A (curies) =

At first glance, it may appear that the units in the above equation do not cancel out.
However, the N in the equation represents the number of atoms available for transformation
and these atoms cancel with the “transformation” unit in the constant. Also note that the
half-life is in units of seconds.

1,602 years e 365 days per year ® 24 hours per day e 3600 seconds per hour =
5.05 x 10'® seconds = the half-life of Ra-226 in terms of seconds.

Step 4: Plug in known quantities:

In2
A (curies) = = *2.67 x 10* (atoms) ® 2.7 x 107" (curies per transformation)

5.05 x 10" (sec)
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Step 5:  Solve for the unknown:
A =090C
Step 6: Conduct reality check:

The unit curies was defined as the number of transformations per second in one
gram of Ra-226, or one gram of Ra-226 has an activity of 1 C1. v

The SI derived unit of activity is the becquerel (Bq) and is that quantity of radioactive
material in which one atom is transformed per second or undergoes one disintegration per
second (1 dps). Since the becquerel is a rather small unit, metric prefixes are often applied to
aid in designating larger amounts of activity. For example, an activity of one million
transformations per second is one megabecquerel (MBq). An activity of one billion
transformations per second is one gigabecquerel (GBq).

Specific activity is defined as the activity per unit mass of a radioactive substance and is
reported in units such as curies per gram (Ci/g) or becquerels per kilogram (Bq/kg). As we
showed in the example above, one gram of Ra-226 has an activity of 1 Ci. In other words,
the specific activity of Ra-226 would be 1 Ci/g. The following expression can be used to
determine the specific activity of any radionuclide.

2’ . NAvogadro .
SA = ————( Equation 10-3
AW
where,
SA = the specific activity, curies per gram

Navogadro = Avogadro’s number, 6.0247 x 10% atoms

AW = Atomic weight, in grams
A = radioactive decay constant
Ci = constant to convert to curies, 2.7 X 107" curies per transformation

Problem 10-2
What is the specific activity of Rn-220?7 U-238?, H-37
Step 1: Isolate the unknown variable:

SA - /’l’ . NAvogadro . Cl
AW
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In 2
]—{/2

1 =

Step 2: Simplify the equation:
Substitute the expression for the decay constant onto the equation:

In 2

U

Avogadro

SA4

G
AW

Step 3: Validate the problem set-up:

In2

—_—— e
S4(Cilg) = Tiy5(5e) e C, (transformation/sec) v’

AW (grams)

Avogadro (a lom S)

As with our first example, the half-life is in units of seconds.
Step 4: Plug in known quantities:
Half-lives:

Rn-220: 3.05 days e 24 hours/day ® 3600 sec/hr = 2.64 x 10 sec
U-238: 4.5 x 10° years o 365 days e 24 hours/day e 3600 sec/hr = 1.42 x 10'7 sec

N-16: 7.2 sec

Rn-220

1
m%)%— * 6.0247 x10% (atoms)
SA(Cilg) = =% (sec) ¢ 2.7x10™"" (transformation/sec)
220 (grams)

U-238

In2

m L] 6.0247)(.'1023 (atoms)
Lo X seC

SA(Cilg) = ©2.7x10" (transformation/sec)
238 (grams)
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N-16

In2 _, 6.0247x10% (atoms)
7.2(sec)

SA(Cilg) = ¢ 2.7x10™"" (transformation/sec)
16 (grams)

Step 5:  Solve for the unknown:

Rn-220: SA=1.94x 10’ Ci/g
U-238: SA=3.34x 107 Ci/g
N-16: SA=9.79x 10" Ci/g

Step 6: Conduct reality check:

The specific activity gets larger as the half-life gets shorter. We see in are example
that the specific activity of U-238 is very small and its half-life is very long. The
converse is true for Rn-220 and N-16. v/

There is also a quick way to estimate the specific activity for any radionuclide,
using a ratio to Ra-226. This ratioing works since the specific activity of Ra-226 is
unity. The expression 1s:

Half - life, Ra —226 o Atomic Weight, Ra —226
Half - life, radionuclide o Atomic Weight, radionuclide

The Radioactive Decay Curve

The expression above for activity, 4 = A e N e C,, gives the activity associated with a

given number of atoms of a radionuclide present. Of course, the atoms of the radionuclide
are constantly undergoing radioactive decay, so the number of atoms present constantly
changes. Sometimes it is important to know what activity will be present as a function of
time.

An easy way to show how the activity of a radionuclide changes with time is to plot the
activity over time on a graph. We have already said that over one half-life, the activity
decreases by %. The activity after two half-lives would be %, and so on. This relationship
yields the following relationship for the activity after “n” half-lives given a known activity at
time zero:

This relationship yields the following relationship for the activity after “n” half-lives given a
known activity at time zero:

= — Equation 10-4
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Exhibit 10-1 shows the plot of relative activity as a function of the number of half-lives. As
you can see from the plot, the activity decreases rapidly at first and then tails off near zero.
Although difficult to see from Exhibit 10-1, the activity never gets to zero. It is like if you
stand at one side of a room and walk half the distance to the opposite wall, and then half the
distance again, and half the distance again, you never get to the wall. There is always some
space of which you can take half the distance.

As can be seen with Exhibit 10-1, it is difficult to distinguish the activity after seven half-
lives. A more convenient way to plot the decay curve is shown in Exhibit 10-2. The y-axis
scale has been converted to a logarithmic scale. The x-axis is still a linear scale. This type of
plot is called a semi-log plot and you have seen examples of these plots earlier in the book.
As can be seen in Exhibit 10-2, the semi-log plot of relative activity is a straight line. We

can also determine the relative activity present after 7, 8, 9, or 10 half-lives.

Exhibit 10-2 tells us two things. First, the change in activity over time is linear when plotted
on a semi-log plot. From this fact, we know that the equation for activity at any time “t”, is
given by an exponential formula. The exact formula is:

A = A jee Equation 10-5
A is the activity at any time t, given an activity at time zero of Ag. The decay constant, A, is
. i In2
the same constant as we discussed earlier, 4 = ;—
1/2

Second, a rule of thumb can be developed based on the plot. Although we have said that the
activity never gets to zero, we can say when the radioactivity is approximately zero. From
Exhibit 10-2, we see that at seven half-lives, there is less than one percent of the activity
remaining and after ten half-lives there is one-tenth of one percent of the original activity
remaining. We can say that after between seven and ten half-lives, the activity is essentially
zero. Caution must be taken for very large sources of radioactivity. One percent or even
one-tenth of one percent still could be a large amount of activity if you begin with a very
large amount of activity.

Problem 10-3

Plot the activity, as a function of time in years, of H-3, Mn-54, and Ni-63. The activity at
time zero for each of these radionuclides is 1 curie. These radionuclides have the following

half-lives:

H-3: 12.3 years
Mn-54: 303 days
Ni-63: 92 years
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Step 1:  Isolate the unknown variable:

4 = Ao
1 o In2
T

1/2

Step 2:  Simplify the equation:

Substitute the expression for the decay constant onto the equation:

In2

4 = e

t

Step 3:  Validate the problem set-up:

A (curies) = A, (curies)ee

Tis3 (years)

of (years)

Note that we need are half-lives in years. To convert the Mn-54 half-life:

Mn-54:

Step 4:  Plug in known quantities:

H-3

A (curies) = 1(curie)ee
Mn-54

A, (curies) = 1(curie)ee
Ni-63

A, (curies) = 1(curie)ee

2
12.3{ years)

“0.83 (years)

n 2
92 (years)

303 days e 1year per 365 days = 0.83 years.

o (years)

of (years)

ot ( years)
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Step 5:  Solve for the unknown:

The following table presents the activity for given times between 0 and 100 years.

Time H-3 Mn-54 Ni-63

0 1 1 1
10 0.569262 0.000237 0.927441
20 0.324059 5.6E-08 0.860147
30 0.184475 1.32E-11 0.797735
40 0.105014 3.13E-15 0.739853
50 0.059781 7.4E-19 0.68617
60 0.034031 1.75E-22 0.636382
70 0.019372 4.14E-26 0.590207
80 0.011028 9.8E-30 0.547382
90 0.006278 2.32E-33 0.507664
100 0.003574 5.48E-37 0.470829

Step 6: Conduct reality check:

Exhibit 10-3 presents the semi-log plots for the three radionuclides. You can see
from the plot that the three decay plots have very different slopes. The slop of each
plot is a function of the half-life. The shorter the half-life, the steeper the slope of
the plot. v/

Decay Series

As we touched upon earlier, in a radioactive decay series, the decay of the parent nuclide
produces a daughter product that is radioactive. The daughter nuclide also produces radiation
when it decays, as does each successive daughter in the chain until a stable isotope is
produced. This series of transformations is known as a decay series, or decay chain. The
activity contributed from the parent versus the daughters will vary depending on the half-life
of the parent and the half-lives of the daughters. When the amount of activity being produced
is the same as the amount that is decaying, the chain has reached equilibrium. There are two
types of equilibrium, depending on how the half-life of the daughter compares to the half-life
of the parent: secular equilibrium and transient equilibrium.

In secular equilibrium the half-life of the parent is very much longer than the half-life of the
daughter. When in equilibrium, the activity of the daughter is equal to the activity of the
parent. Equilibrium is reached in approximately seven half-lives of the daughter. The most
common illustrations of secular equilibrium are the natural occurring decay series. There are
four natural decay series. The four series are headed by Th-232, U-235, U-238, and Pu-241.
The fourth series, the one headed by Pu-241, is no longer present in nature. The other three
series have a number of similarities, other than still existing today in nature. All three series
have isotopes of radium and radon in the chain. Also, all the series end in a stable form of
lead.
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Exhibit 10-3
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In transient equilibrium the half-life of the parent is longer than that of the daughter, but not
very much longer. After the daughter activity builds up and reaches equilibrium, it decays
with the same rate of decay as the parent. In other words, the effective half-life of the
daughter is the same as that of the parent.

When the half-life of the parent is shorter than that of the daughter, the two never reach
equilibrium.
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CHAPTER 11
INTERACTION OF RADIATION AND MATTER

Most of the mathematical concepts required to solve radiation interaction problems were
presented in the last chapter on radioactive decay, since both types of problems require the
use of the same equations with the variables being redefined slightly. However, several new
and/or often misused definitions are involved in radiation interactions, so we will start with
them.

First, there is often confusion in the use of the terms “attenuation” and *“absorption”. When
properly used, “attenuation” refers to the reduction in the intensity of a beam of radiation by a
combination of absorption and scattering. “Absorption” is the process by which radiation
imparts some or all of its energy to materials through which it passes. “Scattering” is defined
as a change in direction as a result of a collision or interaction. The importance of these
distinctions will become more apparent as the various interaction processes are discussed.

Gamma Attenuation

The equation that is most often associated with the attenuation of gamma photons is
[=],e™ Equation 11-1

where,

I

final gamma intensity

]
l

initial gamma intensity

e = base of natural logarithm

u = linear attenuation coefficient [cm ™)

Il

x = absorber thickness [cm]

Strictly speaking, this equation is only valid for situations where any interaction of the
incident radiation and the absorbing medium removes that photon from the beam, whether
the interaction is absorption or scattering. Geometries for which this condition is true are
often referred to as “narrow beam” geometries. Conditions where this is not true are referred
to as “broad beam “ geometries. The latter geometries allow scattered photons to reenter the
primary beam, where the former geometries preclude this by the use of shi¢lding collimators
or the purity of the nature of the absorbing interaction.



Equation 11-1 is often seen written in other forms like:
[=1, e WA Equation 11-2
where all of the variables are defined as in Equation 11-1 and
p = density of absorbing material.
The advantage of using this form of the equation is that the p/p term, called the “mass

attenuation coefficient” is relatively independent of the absorbing material for photon
energies between about 0.7 and 5 MeV. Some w/p data are tabulated in Exhibit 1 1-1.

Exhibit 11-1.
Mass Attenuation Coefficients (i/p)

Photon Energy [keV] Air Water |Concrete| Iron Lead
800 0.0707 | 0.0786 | 0.0709 | 0.0669 | 0.0885
1000 0.0636 | 0.0707 | 0.0637 | 0.0599 | 0.0708
1500 0.0518 | 0.0575 | 0.0519 | 0.0488 | 0.0517
2000 0.0445 | 0.0494 | 0.0448 | 0.0362 | 0.0455

Both of these equation formulations require narrow beam geometries to be truly applicable,
However, they are often incorrectly applied to all geometries, but are often good enough for
first approximations in fieldwork. The analogy of this requirement, in the context of
radioactive decay, it is assumed that once an atom decays, it no longer is radioactive. If this
is not the case, we adjust the decay equation to reflect the ingrowth of a radioactive daughter.
How “broad beam” geometries are correctly handled is radiation protection problems will be
discussed later in this chapter.

Problem 11-1

What exposure rate of Cs-137 photons is transmitted through a 1 cm Pb shield, if the incident
rate is 1 R/hr?

Step 1: Isolate the unknown variable:

— =(ulp) pr)
I=1I,e

Step 2: Simplify the equation:

The equation is already simplified.
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Step 3: Validate the problem setup:
R/hr = R/hr
Step 4: Plug in known quantities:
[=1 eg (0088511350 E =0.66 MeV and p = 11.35 g/cm*
Step 5:  Solve for the unknown:
1=0.366 R/hr
Step 6: Conduct reality check:
Check to see that exponential is unitless.
Problem 11-2

What is the incident flux of Co-60 photons on a 1 inch thick iron shield if 10°
photons/cm ? /sec emerge from the shield, given Co-60 photon energy (total) is ~ 2500 keV?

Step 1: Isolate the unknown variable:

I,= !

0T Sl aNm
Step 2:  Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:
photons/cm? /sec = photons/cm ° /sec
Step 4: Plug in known quantities:

[
1= 10

- o~ (0054)(7.86X2.54)

Interpolate p/p = 0.0544 from Exhibit 11-1

Step 5:  Solve for the unknown:

6
I,= 10 _596x10° photons/cm? /sec
0.338
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Step 6: Conduct reality check:
Check to see that exponential is unitless.
Problem 11-3

What is the ratio of transmitted to incident photon dose rate for 300 keV photons and 50 cm
water shield?

Step 1: Isolate the unknown variable:

1

=P

IO
Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

Ratio is unitless.
Step 4:  Plug in known quantities:

7 ~(0.119)(1)(50)

__.:e

I(]

Step 5:  Solve for the unknown:

i=2.61 x107?
I

0
Step 6: Conduct reality check:

Check to see that exponential is unitless.

Problem 11-4

What is the p/p of a material with a density 2.7 g/cm?, that exhibits a tenth value layer of
10 cm?
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Step 1: Isolate the unknown variable:

In(:)
wp=-—"
0X

Step 2:  Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:

1

cm’/g= ————
5 (g/cm’)(cm)
Step 4; Plug in known quantities:

In(/10) _ =23
2.7)10)  (2.7)(10)

wp=

Step 5:  Solve for the unknown:

wp =0.0852 cm?* /gram
Step 6: Conduct reality check:
Coefficient is right in range of published values.

There are three primary reactions through which gamma photons interact with matter. At low
energies (E < 0.1MeV) most interactions are via a process called the “Photoelectric Effect”.
In this process the photon is completely absorbed when it gives up its entire energy to an
orbital electron of the absorbing medium, thus releasing the electron from its nucleus
(ionization) and giving the electron some kinetic energy. The cross section (or probability)

for this process is proportional to Z* A* or Z* of the absorbing material.

For photons with 0.1 < E <5 MeV, most interactions are via a process called “Compton
Scattering”. In this process the incident photon has too much energy to be taken away by the
electron only, so a secondary photon is scattered, carrying away the excess energy (a photon
of lesser energy). The cross section for this process is proportional to Z of the absorbing
material.

Beginning at photon energies of 1.02 MeV, a process called “Pair Production” can occur. In

this process, the high-energy photon interacts with the nucleus of an atom of the absorbing
material and an electron/positron pair is created. This process represents the creation of
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matter from energy as predicted by Einstein’s E = mc® and is the opposite of the process of
antiparticles annihilating one another, resulting in the emission of two photons (both with
energy of 0.511 MeV). The cross section for this process is proportional to Z* and becomes
predominant at E>5 MeV.

It can be seen that only the photoelectric effect, of the three interaction modes, meets the
requirements for narrow beam geometry without the use of collimators, etc., or without
modification of the equation to accommodate scattering (in the case of Compton scattering)
or the creation of bremsstrahlung and annihilation radiation (in the case of Pair Production).
The modification of the most often used formulation of the attenuation equation
(Equation 11-2) is the insertion of a “Buildup Factor” (B) into the equation to yield:

I=1,Be WrKm Equation 11-3
Dose Buildup Factors have been tabulated for a variety of beam types, absorbing materials
and photon energies. An example tabulation is given in Exhibit 11-2.

The determination of the correct value for B in a specific situation entails the following steps:
Step 1:  Evaluate the value of (u/p)(px) for the situation.
Step 2: Refer to the Buildup Factors table that pertains to the beam type, absorbing material

and gamma energy of interest. (Sometimes interpolating B values between given
values of (u/p)(px) is helpful in increasing the accuracy of the B estimate).

Exhibit 11-2.
Buildup Factors

Isotropic Source pux [(|W/p)(px)]

Shielding Material | Energy [MeV] 4 7 10
Fe 0.5 1.98 3.09 5.98
1 1.87 2.89 5.39
2 1.76 2.43 4.13
Pb 0.5 1.69 2 2.27
1 2.26 3.02 3.74
2 2.51 3.66 4.84
Monodirectional Source
Water 0.5 9.05 20 359
1 6.27 11.5 18
2 428 6.96 9.87
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Step 3: Plug B value into Equation 11-3.

Step 4: Solve the equation for the unknown.

Problem 11-5

What thickness of Pb would reduce the exposure rate from a point Cs-137 source photons
(E = 0.662 MeV) from 1 R/hr to 5 mR/hr, including Buildup Factor?

Step 1: Isolate the unknown variable:

L: e ~(u! p) px)

IO
Step 2: Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

Ratio is unitless.

Step 4: Plug in known quantities:

-3
5x10 = o ~(0125X113%0)
1

In (5 x107) = -(0.125)(11.3)(x)

-5.3 = - (0.125)(11.3)(x)

x=3.75 cm

(WP)(px) = (0.125)(11.3)(3.75) = 5.3
B = 1.8 from table by interpolation

Step 5:  Solve for the unknown:

! = g ~(0125)(11.3)x)
I,B
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-3
5x10 = ¢ ~(0125)113()

M(1.8)

X = __i§_3_: 4.13 cm
(0.125)(11.3)

Step 6: Conduct reality check:
Thicknesses are of the same range for small buildup factors.

Problem 11-6

What is the ratio of the transmitted to incident photon dose rate for monodirectional 500 keV
photons and 50 cm water shield, including Buildup Factor?

Step 1: Isolate the unknown variable:
(Wp)(px) = (0.119)(1)(50) = 5.95
Step 2: Simplify the equation:
The equation is already simplified.
Step3: Validate the problem setup:
Ratio is unitless
Step 4: Plug in known quantities:

B = 16 from table by interpolation.

i: 16 e ~(0-119X1X50)

0

Step 5:  Solve for the unknown:

i=4.17 x 1077
I

0
Step 6: Conduct reality check:

Check to see that exponentials are unitless,
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Beta Attenuation

It is not often recognized that WITHIN THEIR RANGE, beta particles are also attenuated
exponentially, that is to say that for x<< range:

where,

— —(ul p) px)
I=1,e

Wp =E;5* [em? /gm]

E = maximum energy of betas [MeV]

max

Problem 11-7

Equation 11-4

What fraction of incident 2 MeV betas would be expected to penetrate an Al shield of 100
mg/cm * thickness?

Step 1: Isolate the unknown variable:

Step 2:

Step 3:

Step 4:

Step 5:

R Wp=E1*=2"%=037lcm’/g

1,

Simplify the equation:

The equation is already simplified.
Validate the problem setup:

Ratio is unitless.

Plug in known quantities:

i: g ~(037D(0.1)

‘[O
Solve for the unknown:

L. 0.964
1

0
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Step 6: Conduct reality check:
Check to see that exponential is unitless.
Problem 11-8

What flux of 1 MeV betas penetrates a water shield of 2.5 mm thickness if
10°* betas/cm * /sec are incident on the shield?

Step 1: Isolate the unknown variable:
I=1, e ~(H! PXm) Wp=E#=1-%=
Step 2:  Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:
betas/cm * /sec = betas/cm * /sec
Step 4: Plug in known quantities:
I=10%e-Mx025)
Step 5:  Solve for the unknown:
I1=10"e0.779 = 779 betas/cm* /sec
Step 6: Conduct reality check:
Check to see that exponential is unitless.

Problem 11-9

What dose rate reduction would be expected on a field of 4 MeV betas with an Al shield of
0.5 cm thickness?

Step 1: Isolate the unknown variable:

L ot wp=E_@=4"9=0.138 par = 2.7 glem’

1,
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Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

Ratio is unitless.

Step 4: Plug in known quantities:

_{_z o ~(0138)X27)(0.5)
1,

Step 5:  Solve for the unknown:

i= 0.830 = 17% reduction

0
Step 6: Conduct reality check:
Check to see that exponential is unitless.

Neutron Absorption

Neutrons are also attenuated exponentially. The formulation that is most commonly used for
this situation is:

O=D e Equation 11-5
where,
® = transmitted neutron flux or dose rate
@, = incident neutron flux or dose rate
X, =oN
where,
G = interaction cross section [cm? ]
N = number of atoms/cm

x = shield thickness [cm]
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Since neutron interaction processes are complex and very dependent on neutron energy,
sometimes it is necessary to insert a Buildup Factor variable in this equation as we did for
gammas. A discussion of neutron buildup factor quantification is beyond the scope of this
book.

For point neutron sources, an equation that includes flux reduction via attenuation and with
distance from the source is:

D e
D =Dr—2 Equation 11-6
where,
¥, = total removal cross section [cm ™ ]
x = thickness of absorbing material [cm]
r = distance from source to point of interest [cm]

Problem 11-10

What is the ratio of output to input flux of neutrons from an iron shield of 10 cm thickness, if
its attenuation cross-section is 10 ?c¢m * (10 barns)?

Step 1: Isolate the unknown variable:

23
29—52&0 7.86 =0.848 cm ™!

fi—=e‘y"" Z,=cN=10"e
%o

Step 2: Simplify the equation:

The equation is already simplified.
Step 3. Validate the problem setup:

Ratio is unitless.

Step 4: Plug in known quantities:

ﬂ = o~(0:848)10)

Do
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Step 5:  Solve for the unknown:

—'—p—=2.08x 107
4]

Step 6:  Conduct reality check:
Check to see that exponential is unitless.

Problem 11-11

What is the flux at a distance of 1 meter from a neutron source with ¢, at 1 cm =
10® n/cm 2 /sec that is stored at the center of a 50 cm diameter container of water, if the total
removal cross section is 0.1 cm ™' ?

Step 1: Isolate the unknown variable:

—Igx
e "R

O=0, 3

¥

Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

n/em? /sec = n/cm? /sec
Step 4:  Plug in known quantities:

_ 1 08 e—(O.l)(ZS)

¢ 1002

Step 5:  Solve for the unknown:
¢ =821 n/em” /sec
Step 6: Conduct reality check:

Check to see that exponential is unitless.
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Neutron Activation

Under certain combinations of neutron energy and absorbing material, the stable absorbing
material can be made radioactive (activated). It is often of interest how much radioactive
material has been produced by specified neutron irradiation conditions. This type of
evaluation is achieved by use of the following equation:

Ap =Ko¢n(l - e i )e ™ Equation 11-7
where,
A = measured activity at time t, [ncpm]
t, = time increment between end of irradiation and the time at which target is counted

K = efficiency of counter

¢ = activation cross section [cm * /atom/neutron]

¢ = neutron flux [neutrons/cm * /sec]

n = total number of target nuclei (not to be confused with ‘n’ used to denote the neutron
itself)

A = decay constant of radioactive material [1/time]

t, = irradiation time

e = base of natural logarithm

With activation cross sections being readily available from the Chart of the Nuclides,
activation problems are solved just as radioactive decay problems were in the last chapter.

Problem 11-12

What is the highest activity in [dps] that can result from an irradiation of 10 grams of Na-23
for 100 hours with a thermal neutron flux of 10'°n/cm ? /sec if the activation cross section is
0.4 barns?

Step 1: Isolate the unknown variable:

n= 6.02x10% ¢ 10
23

Ayp =Kopn(l-e ¥)e =2.62x10%
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Step 2:  Simplify the equation:
Ag/K=o¢n(l-e ¥ )e
Step 3: Validate the problem setup:

¢ ¢ n c
£ = () —5—atoms) =~
sec dis” ¢m* sec sec

Note: N x atoms = dis

Step 4: Plug in known quantities:

0.6930100
A

“2=(04x 1072)(10°)(2.62x 10%)(1-e )

Step 5:  Solve for the unknown:

_/;t(_z =1.05x 10°# 0.99 = 1.04 x 10° disintegrations

Step 6: Conduct reality check:
Make independent order of magnitude estimate.

Problem 11-13

What irradiation time does it take for the reaction in problem 11-12 to reach a practical
maximum?

Step 1: Isolate the unknown variable:
~7 half-lives for equilibrium

Step 2:  Simplify the equation:
Half-life = 15 hours

Step 3: Validate the problem setup:

Hours = hours
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Step 4: Plug in known quantities:
Step 5:  Solve for the unknown:
Time for equilibrium =7 e 15 ~ 100 hours
Step 6: Conduct reality check:
Check arithmetic.
Problem 11-14
What would be the highest activity that could be induced in the sample in problem 11-12?

Step 1: Isolate the unknown variable:

Step 2:  Simplify the equation:
The equation is already simplified.

Step 3: Validate the problem setup:
(1/sec  unitless) = (cm®/atom e neutron) e (neutron/cm’  sec) e atoms
1/sec = 1/sec

Step 4: Plug in known quantities:
Arz 9
(—IE'— o= 1.05x 10°  from problem 11-12

Step 5:  Solve for the unknown:
See step 4.
Step 6:  Conduct reality check:

Check arithmetic.
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Problem 11-15

What would be the total count at 10% efficiency in problem 11-12 after 2 hours post
irradiation?

Step 1: Isolate the unknown variable:

0.693e2

A,=Ke1.04x10%°ec

Step 2: Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:
1/sec = 1/sec
Step 4: Plug in known quantities:
A ,=(0.1)(1.04 x 10°)(0.912)
Step 5:  Solve for the unknown:
A,,=9.48x 107 counts

Step 6: Conduct reality check:

Check to see that exponential is unitless.
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CHAPTER 12

INTERNAL DOSIMETRY

A later chapter will discuss external dosimetry, assessing the radiation exposure received
from penetrating radiation sources outside the body. This chapter discusses radiation
exposure resulting from radioactive material deposited inside the body. Both external and
internal dosimetry must be considered together when operating a radiation protection
program. Limits on the radiation dose allowed to a worker or member of the public are in
terms of total effective dose equivalent, that is the sum of internal and external dose. This
chapter discusses this and other related concepts.

Basic Dosimetry Concepts

Radiation dose, or absorbed dose, is the measure of the amount of energy imparted to matter
from ionizing radiation. The special unit for absorbed dose is the rad. One rad is equal to
100 ergs of energy deposited per gram of matter. Absorbed dose can be calculated regardless
of the type of ionizing radiation (gamma radiation, beta radiation, or alpha radiation) or the
type of matter (air, water, body tissue). The System International (SI) unit for absorbed dose
is the Gray. One Gray is equal to one Joule of energy imparted to one kilogram of matter.
One Gray equals 100 rad.

For radiation protection, we are more interested in the amount of energy absorbed in a mass
of body tissue and the type of radiation involved. An absorbed dose of one rad to a person
means that 100 ergs of energy were deposited by ionizing radiation per gram of body tissue.
However, different types of ionizing radiation have different potential to cause damage in the
body. In other words, one rad of absorbed dose from gamma radiation causes different
damage compared to one rad of absorbed dose from alpha radiation. The radiation protection
community developed an expression that attempts to place radiation exposure of the body on
even terms as it relates to the potential for causing damage to the body. The concept that was
developed is dose equivalent. The special unit for dose equivalent is the rem. The SI unit is
the Sievert. One Sievert is equal to 100 rem. Dose equivalent (H) is the product of the
absorbed dose (D), a quality factor (QF), and a distribution factor (DF).

H =D e QF e DF Equation 12-1

The quality factor is used to represent the relative difference in damaging potential for
different kinds of ionizing radiation. For alpha particles, the quality factor is 20. For beta,
gamma, and x-rays, the quality factor is 1. For neutrons, the quality factor is a function of
the neutron energy. The factor is 2 for thermal neutrons and 10 for fast neutrons. In other
words, the absorbed dose from alpha radiation causes 20 times more damage than the same
absorbed dose for beta radiation.

The distribution factor is rarely used in radiation protection calculations. It applies to non-
uniform deposition of certain bone seeking radionuclides, such as radium. Note that the dose
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equivalent is a defined concept to be used for radiation protection. The quality factors
represent a typical value for the relative effectiveness for a type of radiation to cause damage
and does not necessarily represent measured values. The only measured value in the dose
equivalent concept is absorbed dose.

Problem 12-1

What is the dose equivalent, in rem, delivered from an absorbed dose of 47 millirads from
beta particles? 47 millirads from alpha particles? What are the dose equivalents, in Sieverts,
from these absorbed doses?
Step 1: Isolate the unknown variable:

H=D e QF ¢ DF
Step 2:  Simplify the equation:

The equation is in a simplified form.
Step 3: Validate the problem set-up:

H (rem or Sieverts) = D (rad or Gray)  QF (rem/rad or Sievert/Gray) ¢ DF (unitless)v’

The dose equivalent is Sieverts is equal to the product of the dose equivalent in rem and 0.01
Sievert/rem.

Step 4: Plug in known quantities:

Beta absorbed dose (QF =1, DF = 1)

H (rem) =47 x 107 (rad) ® 1 (rem/rad) e 1 (unitless)

Alpha absorbed dose (QF =20, DF = 1)

H (rem) =47 x 107 (rad) « 20 (rem/rad) e 1 (unitless)
Step 5:  Solve for the unknown:

Beta absorbed dose (QF = 1, DF=1)

H =47x 107 rem =47 x 10° Sievert

Alpha absorbed dose (QF = 20, DF=1)

H =94x 107 rem =94x 10 Sievert
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Step 6: Conduct reality check:
For absorbed doses from beta and gamma/x-rays, the dose equivalent is equal to the
asorbed dose (the QF is one). For alpha particles, the dose equivalent is twenty times
the absorbed dose. v/

Internally-Deposited Radioactive Material

Radioactive material can be taken into the body by a variety of means. These means include
inhalation, ingestion, absorption through the skin, and inj ection (either inadvertent or for
medical reasons). Once in the body, a radionuclide will be incorporated into body tissues.
Different radionuclides will be incorporated into different organs and eliminated from the
body at different rates. How effectively a specific radionuclide is incorporated into the body
depends on the chemical solubility of the element. Relatively insoluble elements are not
absorbed into the blood stream and are readily excreted from the body. Relatively soluble
elements are readily absorbed into the body.

While in the body, the radioactive material will decay and the radiation emitted during this
decay will deposit energy into body tissue. For non-penetrating radiation (alpha radiation,
most beta radiation, and some very low energy gamma rays), the energy of the radiation is
imparted into the tissue containing the radioactive material. For example, uranium taken into
the body is accumulated in the kidney. The alpha particles emitted from the uranium
deposits their energy in the kidney. In another example, iodine is concentrated in the thyroid.
The beta particles emitted from radioisotopes of iodine deposit their energy in the thyroid.
For penetrating radiation, gamma rays and some high-energy beta particles, the radioactive
material in one tissue will irradiate other parts of the body. For example, cesium is
accumulated in body muscle. The beta particle emitted from cesium-137 deposits its energy
into the muscle tissue. The 0.662 MeV gamma ray emitted from the barium-137m daughter
product (which is in secular equilibrium with the cesium-137) will irradiate all organs of the
body.

Radioactive material is eliminated from the body in two ways: radioactive decay or
climination through body excreta. Each individual radionuclide has a radioactive half-life,
the time it takes for half of the atoms of a given radionuclide to decay. Elements also have a
half-life in the body, a biological half-life. For example, tritium has a biological half-life of
10 days compared to its radiological half-life of 12.3 years. Since both biological elimination
and radioactive decay are occurring, a radionuclide will have an effective half-life in the
body. The effective decay constant is the sum of the radiological and biological decay
constants:

Ag =ArR tAp Equation 12-2
In2

Ay = z Equation 12-3
‘Tl‘ /2E
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In2

A =

R

i, = In2
'TI'/ZB

Problem 12-2

What is the effective half-life of tritium in the body? What is the effective half-life of gold-
199 in the body?

T8 (hydrogen-3) = 12 days
T1xr (hydrogen-3) = 12.3 years
Tins (gold-199) =3 days

TI/ZR (gOld-199) =3.15 days

Step 1: Isolate the unknown variable:

?‘-E=7‘-R +7\4B
A, = In2
];/ZR
i, = In2
)28
In2
T = =
1/2E A’E

Step 2:  Simplify the equation:

In2 In2
Ap = +
‘TI'/ZR ]IIZB
In2
T = —=
1/2E ZE
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Step 3: Validate the problem set-up:

A, (days“l) _ In2 . In2 v
T, ,p (days) T,y (days)
In2
T days) = ———V
1/ 2x (days) ﬂE(days'l)

Step 4: Plug in known quantities:

Tritium
A (days™) = In2 + In2 = 0.058(days™)
12.30365 (days) 12 (days)
In2
T days) = —————
2 (aYS) = s (days™)
Gold-199
2
Ag(days™) = In2 + n2 0.45(days™)
3.15 (days) 3 (days)
In2
T days) = ————
2z (dys) 0.45(days™)
Step 5:  Solve for the unknown:
Tritium
In2
T days) = —————— =12(days
12 (days) 0.058(days_1) (days)
Gold-199
In2
T da = —————— =1.5(days
125 (days) 05y (days)

Step 6: Conduct reality check:
For radionuclides like tritium, where the radiological half-life and biological half-

life are very different, the effective half-life is virtually equal to the shorter of the
two half-lives (one half-life dominates). For radionuclides like Au-199, where the
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two half-lives are similar, the effective half-life is something less than either half-
life (both elimination processes act to reduce the amount of material in the body).v’

Committed Dose Equivalent and Effective Dose Equivalent

Since different radionuclides will remain in the body for different amounts of time, the
effects of two intakes of different radionuclides can be vastly different. For the time that a
radionuclide (or its radioactive daughter products) is in a body, the body is absorbing dose
and is receiving a dose equivalent. To account for this exposure to radiation over time, a
concept has been developed. The Committed Dose Equivalent is the dose equivalent
received from an intake of radioactive material over a set time period. Typical time periods
include 50 years and 70 years. The 50-year time period is used to represent a worker’s
lifetime and the 70-year time period represents the life span of a member of the public.

There is still another radiation protection concept developed to assess the impacts of
internally deposited radioactive material. As mentioned earlier, different elements will go to
different organs of the body, e.g., iodine to the thyroid, uranium to the kidneys, and cesium to
the muscle. Also, radioactive material that is inhaled will deposit some of its radiation in the
lungs, depending on how easily the material is taken into the bloodstream from the lungs.
Different organs exhibit different sensitivities to radiation. The same dose equivalent
delivered to different organs can result in different risks. The concept is called Effective
Dose Equivalent.

To understand the concept of Effective Dose Equivalent (EDE), we must consider that for
exposure to radiation at levels typical for workers and the public, effects on the body are
stochastic. In other words, there is a probability of an impact on the body associated with a
given exposure. It is not certain that the effect will occur, just that there is a probability of an
effect. For radiation exposure, the effects considered in radiation protection are fatal cancer
and genetic effects passed to future generations.

The stochastic effects are modeled as a linear relationship between risk of an effect and dose
equivalent without a threshold. This model means that for any dose, no matter how small,
there is an associated risk; and since the relationship is linear, if you double the dose, you
double the risk. Exhibit 12-1 illustrates the relationship.

The concept of Effective Dose Equivalent, Hg, uses the relative risk of inducing a fatal

cancer or genetic effect from an exposure to a specific organ to weight the dose equivalents
received by that organ. That is:

H, = Zw, e H, Equation 12-4

all organs
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Risk

Exhibit 12-1.
Linear Non-Threshold Theory

Dose Equivalent

where,

H; = dose equivalent deliver to organ (tissue) t
w; = weighting factor for organ (tissue) t

The weighting factors are given in Exhibit 12-2.
As with dose equivalent, internally deposited radioactive material can result in an effective

dose equivalent over a period of time. Therefore, the effective dose equivalent delivered

from the intake of radioactive material over a set period of time is the committed effective
dose equivalent (CEDE).
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Exhibit 12-2.
Organ Weighting Factors

Organ Weighting Factor
Gonads' 0.25
Breast 0.15
Red Bone Marrow 0.12
Lung 0.12
Thyroid 0.03
Bone Surface 0.03
Remainder” 0.30

" Represents genetic risk to first 2 generations.
2 Weighting factor of 0.06 for the five organs with the next
highest dose equivalent.

To determine the dose equivalent, effective dose equivalent, and committed effective dose
equivalent, you must consider all the types of radiation emitted from a radionuclide, all the
organs that contain radioactive material, and all the possible target organs that could have
energy deposited in them from the “source” organs. This determination can be a laborious
process. Many radionuclides emit many gamma rays along with either beta particles or alpha
particles. Also, many elements go to more than one organ in the body, meaning that there
can be many source organs. Fortunately, the calculations have been done for us. Large
databases exist that contain dose conversion factors. These conversion factors estimate the
collective dose equivalent and CEDE per unit intake of material.

A comprehensive database was published by the International Commission on Radiation
Protection (ICRP), in their Publication 30, Limits for Intakes of Radionuclides by Workers.
ICRP-30 estimates the 50-year committed dose equivalent and CEDE for most of the
radionuclides of interest in the nuclear industry for ingestion and inhalation of radionuclides
in a variety of chemical forms. Another database is DOE/EH-071, Internal Dose Conversion
Factors for Calculation of Dose to the Public. This publication is used by the DOE in
estimating CEDE for both DOE workers and the public surrounding DOE sites.

Problem 12-3

What is the 50-year committed effective dose equivalent, in rem, delivered from inhaling 1
microcurie of strontium-90 (D class).

Step 1: Isolate the unknown variable:

Hy = Z"":’Hz

all organs
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Simplify the equation:
The equation is in a simplified form.

Validate the problem set-up:

H(rem) = Zw, (unitless) ® H,(rem) v’

all organs

Plug in known quantities:

The only data we have is the weighting factors. To determine the organ dose
equivalent values, we consult a reference that provides these unit dose equivalent
values. One example of an appropriate reference is DOE/EH-0071, Internal Dose
Conversion Factors for Calculation of Dose to the Public, July 1988, U.S.
Department of Energy.

This reference gives us an organ dose of 1.2 rem per microcurie to the red bone
marrow (weighting factor 0.12) and 2.7 rem per microcurie to the bone surfaces
(weighting factor 0.03).

Hg=12reme 0.12 + 2.7 rem » 0.03
Solve for the unknown:

Hg=0.23 rem

Conduct reality check:

DOE/EH-0071, Internal Dose Conversion Factors for Calculation of Dose to the
Public, also presents the CEDE per unit intake (microcurie). The reference gives a

CEDE of 0.23 rem/puCi.v’

Dose Equivalent Limits

The concepts of dose equivalent, committed dose equivalent, and effective dose equivalent
(and committed effective dose equivalent) are used to verify that exposure of workers and the
public are within established dose equivalent limits.

In the United States, dose equivalent limits are established by either the U.S. Nuclear

Regulatory Commission (NRC) or the U.S. Department of Energy (DOE), depending on who
has authority over the operations related to the radioactive material. Both organizations have
codified their dose limits, i.e., made them into law. The NRC requirements are found in Title
10, Code of Federal Regulations, Part 20 (10 CFR Part 20). The NRC as given certain states,
termed Agreement States, the authority to act in the NRC’s behalf for activity associated with
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radioactive material in that state. Agreement States have dose limits that are verbatim to 10
CFR Part 20. The DOE requirements are in 10 CFR Part 834 (for the public) and 10 CFR
Part 835 (for workers).

The occupational dose limits established by the NRC and DOE are identical and include:

(1) A total effective dose equivalent of 5 rems (0.05 sievert); (2) The sum of
the deep dose equivalent for external exposures and the committed dose
equivalent to any organ or tissue other than the lens of the eye of 50 rems (0.5
sievert); (3) A lens of the eye dose equivalent of 15 rems (0.15 sievert); and
(4) A shallow dose equivalent of 50 rems (0.5 sievert) to the skin or to any
extremity. (b) All occupational exposure received during the current year shall
be included when demonstrating compliance with § 835.202(a). (c) Exposures
from background, therapeutic and diagnostic medical radiation, and voluntary
participation in medical research programs shall not be included in dose
records or in the assessment of compliance with the occupational exposure
limits.

Likewise, the NRC and DOE have limited the dose that a member of the general public
living near a nuclear facility can receive. This limit is 100 millirem per year. The U.S.
Environmental Protection Agency has established a dose equivalent limit of 25 millirem per
year from non-reactor fuel cycle facilities and limits the dose equivalent from airborne
effluents to 10 millirem per year through their National Environmental Standards for
Hazardous Air Pollutants (NESHAPs) regulations.

When we look at the dose limits for workers presented above, a few new concepts must be
discussed. First, a worker is limited to 5 rem per year total effective dose equivalent
(TEDE). The TEDE is the sum of the dose equivalent from external radiation and the CEDE
for internally deposited radioactive material. Also, the rules limit the dose equivalent (not
effective dose equivalent) to a single organ to 50 rem (15 to the lens of the eye). This
additional limit is to protect the workers from non-stochastic effects of radiation.

Non-stochastic effects are those effects that exhibit a threshold dose and the severity
increases with increasing dose above that threshold. Note that these effects differ from
stochastic effects, which have no threshold and the chance of incurring an incident increases
with increasing dose. An example of a non-stochastic effect of radiation is cataracts of the
eye. Exposure to radiation to the lens of the eye will cause a cataract. The threshold dose for
a cataract ranges from 200 to 500 rem. Below this dose, no effects will be seen. As the dose
increases above the threshold, the cataract becomes more severe.

The dose limits established above are legal limits. To ensure that these limits are not
exceeded, many nuclear facilities establish administrative limits. The administrative limits
would establish exposure limits less than those in the regulations. For example, a facility
might establish an administrative limit for the TEDE of 1 rem per year. If an individual
exceeds this administrative limit, but not the regulation limit of 5 rem, then the facility has
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not broken the law. However, unless planned, this exceeding the administrative limit might
reflect a breakdown in the radiation safety program.

Annual Limit on Intake and Derived Air Concentration

To control exposure to internally deposited radioactive material, the CEDE limits have been
translated into a convenient term: Annual Limit on Intake (ALI). As the name suggests,
these limits establish the maximum quantity of a radionuclide that can be taken into the body
that would result in a CEDE or committed dose equivalent to an organ exceeding the NRC or
DOE limit. The ALI is established based on a 5 rem CEDE limit (stochastic) or a 50 rem
dose equivalent limit to a single organ (non-stochastic), whichever yields a more restrictive
ALL

The ALI is given by the following formula:

ALI (stochastic) = > rem Equation 12-5
Zw, o H, rem/ uCi

0
ALI (non - stochastic) = >0 rem Equation 12-6
rem/ uCi

1, max .organ

The ALI is defined for each radionuclide and is based on a dose per unit intake factor. Since
one ALI delivers a dose equal to the annual limit, a worker who intakes a mixture of
radionuclides can receive only a fraction of an ALI for each of the radionuclides in that
mixture to ensure that the 5 rem CEDE or 50 rem single organ limit is not exceeded. The
“sum-of-the-fractions” rule is used to demonstrate that the limits are not exceeded. This rule
states that the sum of the ratios of the annual intake for a radionuclide to that radionuclide’s
ALI must be less than unity to not exceed the dose limit. The mathematical expression is:

Annual in take of radionuclide i
ALI for radionuclide i

1 Equation 12-7

overall radionuclides in the mixture

Note that if the above sum-of-the-fractions is equal to one, then the worker has gotten all 5
rem of the limit from the CEDE. If the worker received any external radiation exposure, then
the TEDE would be greater than the limit. To ensure that the TEDE is not exceeded, an
administrative control limit could be used to reduce the ALI for the radionuclides of concern
at a facility.

For worker protection from airborne radioactive material, the ALI is used to establish routine
airborne concentrations, called Derived Air Concentrations (DACs). A DAC is that
concentration of a radionuclide in air that would lead to an intake of one ALI over the course
of 2000 hours of work (and therefore a dose of 5 rem CEDE or 50 rem to a single organ).
The DAC is based on a worker that breathes 0.02 cubic meters of air per minute. Over 2000
hours (120,000 minutes) in a work year, the worker would breathe 2400 cubic meters of air.
The DAC is the ratio of the ALI to the volume of air breathed in a year:
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DAC =

ALI uCi
2400 m’

Problem 12-4

Equation 12-8

What is the inhalation ALI for 1 microcurie of strontium-90 (D class). What is the DAC?

Step 1:

Step 2:

Step 3:

Step 4:

Isolate the unknown variable:

ALI (stochastic) = > rem
Zw, o H, rem/ puCi
ALI (non — stochastic) = >0 rem
rem/ pCi

f,max .organ

ALI uCi

DAC =
2400 m*

Simplify the equation:
The equation is in a simplified form.

Validate the problem set-up:

ALI (uCi) = 5 rem .
ZW, o H, rem/ uCi
ALI(uCi) = 50 rem v
Hl,max.organ rem/,UCl
: ALI uCi
DAC(uCilm’y = ALLuCi
(uCi/m?) 2200 7

Plug in known quantities:

From Problem 12-3, we know that the CEDE is 0.23 .rem/ pCi and that the

maximum organ dose equivalent is 2.7 rem to the bone surfaces.
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ALI(stochastio,uCi) = ——""

023 rem/ uCi
ALI (non — stochastic, uCi) = _ S0rem
2.7 rem/ uCi
. ALI pCi
DAC (uCi/m’ il bt
(uGifm) 2400 m’

Step 5:  Solve for the unknown:
ALI (stochastic, uCi) = 22 uCi
ALI (non — stochastic, uCi) = 19 uCi

19 pCi

DAC(uCil m® = 0.0079 uCi/ mi’
(WCHm) = 00 m HH

Step 6: Conduct reality check:

The non-stochastic ALI is the most restrictive. This occurs when the maximum
organ dose is to an organ with a small weighting factor and there are few organs
that contribute to the CEDE.v

Determining Internal Dose: Air Monitoring and Bioassay

Although not the only route of intake of radioactive material by a worker, inhalation is the
dominant route. The regulations allow for one of two ways to determine the amount of
internally deposited radioactive material accumulated by a worker. One way is through the
analysis of air samples. The other way is to assay the amount of material in the body.

As discussed above, the Derived Air Concentration is used to determine the CEDE delivered
to a worker in a year. Air monitors would be set up in a workplace. These monitors would
be capable of providing a representative breathing zone sample. The sample would be
analyzed to determine the concentration of radionuclides in the air. Logs or similar methods
would be used to determine the amount of time the worker was exposed to a given
concentration. The product of the exposure time and the concentration, divided by 2000
hours must be kept below the DAC. For a mixture of radionuclides, the sum-of-the-fractions

rule is used:

Exposure time ® Concentration < DAC
2000 hours

Equation12 -9
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Exposure time » Concentration for radionuclide i
2000 hours ® DAC for radionuclide i

overall radionuclides in the mixture

Equation 12-10

Bioassay is another means to determine the amount of radioactive material taken into the
body. There are to categories of bioassay: in vivo and in vitro. In vivo bioassay uses
radiation detectors to count the radioactive material in the body. Whole body counters use a
series of detectors to count the radiation that is emitted from the body by radioactive material
in the body. Specialized systems are designed to focus on specific areas of the body, such as
a chest counter, which is used to quantify the amount of material deposited in the lungs.
These specialized systems are generally optimized to see radionuclides that are difficult to
measure with conventional whole body counters.

Some radionuclides, including tritium, uranium, and plutonium isotopes, are difficult or
impossible to quantify using whole body counters. For these radionuclides, in vitro bioassay
is used. Body excreta, generally urine, are analyzed using radiochemical techniques. These
analyses estimate the amount of material being eliminated from the body. Knowing this
climination rate and the type of exposure (routine or one-time), models are used to
extrapolate the amount of material in the body and the amount originally taken into the body.
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CHAPTER 13
ATMOSPHERIC DISPERSION

One of the most important considerations in responding appropriately to atmospheric releases
of radionuclides, especially large accidental releases, is the dispersion of the release in the
atmosphere. Much research has been done on this subject and most Emergency Operation
Centers now have the applicable models, meteorological and demographic data
preprogrammed for instantaneous use. It is essential to the result interpretation phase of the
decision-making process, that the foundation of the processes being modeled is understood
by the interpreter, who is often a radiation protection technologist.

Several sets of semi-empirical equations have been developed to describe the dispersion
behavior of contaminants in turbulent atmospheres. One of the most common sets is named
after one of its developers, Sutton. This set of equations quantifies the ground-level
concentration of the released contaminant as a function of atmospheric stability, wind
velocity and height of release. The relationships of the types of atmospheric stability with
observable weather conditions are shown in Exhibit 13-1.
Sutton’s equation is:

20 Uk

o Equation 13-1

X =

where,

X = volumetric concentration of the contaminant [mCi/m* ]

Q = emission rate [mCi/sec]

x,y = coordinates of point of interest from the foot of the stack

p  =mean wind speed [m/sec]

C = virtual diffusion coefficients in lateral and vertical directions
n = dimensionless parameter determined by atmospheric stability
h = effective stack height [m]

The values of some of these variables for the stability classes listed in Exhibit 13-1 are shown
in Exhibit 13-2.
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A - Extremely Unstable
B - Moderately Unstable

Exhibit 13-1.
Relationship of Stability Classes to Weather Conditions

C - Slightly unstable

D -

Neutral

E - Slightly Stable

F - Moderately Stable

Exhibit 13-2.
Stability Class Characteristics

Stack Height [m]
Stability Class N 25 50 75 100
AB 0.2 0.043 0.03 0.024 0.015
C,D 0.25 0.014 0.01 0.008 0.005
E 0.33 0.006 0.004 0.003 0.002
F 0.5 0.004 0.003 0.002 0.001

Most often this equation is plotted as a curve relating X/Q vs. distance. For ground level

releases the resulting curve is shown in Exhibit 13-3, and for an elevated release in

Exhibit 13-4. It should be noted that elevating a release both (1) moves the maximum
ground-level concentration per unit release further away from the release point and (2)

reduces the magnitude of the maximum ground level concentration.

In many cases, radiological releases are made from a stack at temperatures and velocities
above ambient. Both of these conditions increase the effective height of the stack through
which the release is taking place. This increase in effective stack height is quantified by

means of Equation 13-2:

v AT
h=h_ +d(—)"(1 + —
A )
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Ground Level Concentration [Activity/volume]

Ground Level Concentration [Activity/Volume]
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EXHIBIT 13-3
GROUND LEVEL RELEASE
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EXHIBIT 13-4
ELEVATED RELEASE
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where,
h = effective stack height [m]

h, = actual stack height [m]

d = diameter of stack outlet [m]

v = exit velocity of gas [m/sec]

K =mean wind speed [m/sec]

AT = difference between ambient and gas temperature [°C]

T = absolute temperature of exit gas [°K] (0°C = 273°K)

It is always interesting, and often important, to know where the maximum X/Q is relative to

the distance from the release point, and what the maximum X/Q value is at that point. These
quantities are calculated using the following equations:

X, =(=)> Equation 13-3

Equation 13-4

It is also instructive to know the minimum time of arrival of the release to the point of
maximum concentration or to a destination of demographic importance. For short half lived
radionuclides these transit times will affect the proportion of the released inventory that will
ultimately arrive at any point of interest. These times are calculated by using the equation:

d
t=— Equation 13-5
Y7

where,
t = transit time of contaminant [sec]
d = distance to point of interest [m]

K = mean wind speed [m/sec]
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Problem 13-1

The Ar-41 effluent from an air-cooled reactor is 1000 Ci/sec. The effluent is discharged
through a stack 75 meters high, with a speed of 2 m/sec and a stable atmosphere. What is the
ground level concentration of Ar-41 at 2 km from the stack on the centerline of the plume?

Step 1: Isolate the unknown variable:

2 'yz+2h-2n
e )

X =

Step 2: Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:

mCi mCi sec 1
= [ ) ®

m’ sec m m’

Step 4. Plug in known quantities:

3 I )
2x10 (3110—3)(2“03)2-0.25

m(8x107)(2)(5.98x10%)

X =

Step 5:  Solve for the unknown:
X=6.65x10203,09x 107'=2.05x 107 Ci/m*
Step 6: Conduct reality check:
Check to see that exponential is unitless.
Problem 13-2
If the Ar-41 release in the previous problem were at a temperature of 87°C, ambient

temperature were 27°C, the effluent velocity were 10 m/sec and the diameter of the stack
were 2 m, what would be its ground level concentration 2 km from the stack?
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Step 1: Isolate the unknown variable:

_ _y2+h2
X=—22Q2_n (e ) h=ha+d(u‘i)‘-4(1+£)
nC” px 7, T

10 60
h=75+2(—)"* 1 + —
(2) ( 300)

h=75+(19)(1.2)=97.8 m
Step 2: Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:

mCi _ mCi sec 1

m sec m m’

Step 4: Plug in known quantities:
(98.7)°

3 o r————
2x10 (5x1077)(5.98x10%)

X =
7(5x10°)(2)(5.98x10%)

Step 5:  Solve for the unknown:

X=(1.06x107")(4.08x 102)=4.32% 10~ Ci/m>
Step 6: Conduct reality check:

Check to see that exponential is unitless,
Problem 13-3

In problem 13-2 where does the maximum X occur and what is X, ?

Step 1: Isolate the unknown variable:
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X = —2
muhe

Step 2: Simplify the equation:
The equations are already simplified.

Step 3: Validate the problem setup:

m = (mz)uz

mCi mCi sec
= e— [ ]

m’ sec m

1
m 2
Step 4: Plug in known quantities:

S
————((5971'?3)) 2-025 = (1,91 x 10%)**"
X

max=(

= 2x10°
mex T 2)(97.8)(2.72)

Step 5:  Solve for the unknown:
X, =3.86x10°m
X, =122x107 Ci/m’
Step 6: Conduct reality check:
Check to see that exponential is unitless.

Problem 13-4

How long does it take the released Ar-41 to reach the maximum X distance in problem 13-3?
What proportion of the released Ar-41 decays before reaching this distance?

Step 1: Isolate the unknown variable:

I
|
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Step 2: Simplify the equation:
The equation is already simplified.

Step 3. Validate the problem setup:

m
s€C= —
m

sec
Step 4: Plug in known quantities:

- 3:86x10°
2

Step 5: Solve for the unknown:

t=1.93 x 10°sec = 32.2 hours

0.693¢ 0.693¢32.2

_é..ze L =e 1.83 2506X10_6
AO

Step 6: Conduct reality check:
Check to see that exponentials are unitless.

If the released contamination is a particle and settles to the ground, not behaving as a gas in

transit, as is characterized in Equations 13-1 - 13-5, X is calculated, accounting for increased
ground deposition of the particles during transit, using the equation:

o) P )
e CIXZ-"

X = e Equation 13-6
where,
z’=h-—+
y7,
where,

v, = terminal settling velocity [m/sec]

z’ = elevation of the plume [m]
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and the other variables are as defined in Equation 13-1

Problem 13-5

If the Ar-41 in problem 13-1 were a particulate radionuclide with a terminal settling velocity
of 1 cr/sec and were released at the same rate, under the same conditions, what would be X
at 2 km distance?

Step 1: Isolate the unknown variable:

) _ , S
X:m—z—Q—z—-e e oo X 987-(2x10° e 107)
aC r 2
z’=394m

Step 2:  Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:

mCi mCi sec

m®  sec m

1
* —
m 2
Step 4: Plug in known quantities:

3 _ (39.4)%
10 e (5x107)(5.98x10°%)

7(5x107)(2)(5.98x10°)

Step 5:  Solve for the unknown:
X =(532x1072)(5.95x 10')=3.17x 10> Ci/m?
Step 6: Conduct reality check:

Check to see that exponential is unitless.
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CHAPTER 14
STATISTICS

A health physicist employs statistics to manage data collected as part of their day-to-day
activities. Statistics is used to make an inference or observation about a set of data. This set of
data is often called a population when describing statistical characteristics and the term
population will be used throughout this chapter. The mathematical field of statistics can be
broken into two groups, one descriptive statistics and the other inferential statistics. In
descriptive statistics, the data you deal with is generally the complete population and you
summarize the data for descriptive purposes. In inferential statistics, you draw conclusions about
a large population from a subset of samples. The health physicist encounters both of these
aspects of statistics. For example, a population may be 50 drums of contaminated soil and the
contact dose rate for each of those drums is known. Additionally, soil samples have been taken
from 10 of those drums. Descriptive statistics is used to summarize the dose rate information,
such as the average dose rate of the drums, the maximum dose rate of the drums and the
distribution of dose rates. Inferential statistics is used to estimate the characteristics of all 50
drums from the soil analysis results of the 10 samples, such as average concentration and
standard deviation. This chapter discusses characteristics used in both descriptive and inferential
statistics.

Data Presentation

A common component of both descriptive and inferential statistics is a data set, or population of
data. As described above, in descriptive statistics, often the entire population of data is known,
while in inferential statistics, we are attempting to infer characteristics about a large population
of data from a subset of data. Regardless of the case, you must first organize your data. The
most common methods for organizing data are tabular, putting the data in a table, or graphical.
Exhibit 14-1 below presents the number of points scored by a professional basketball team in
their first 27 games and whether they won (W) or lost (L) the game. Exhibit 14-1 represents just
one possible tabulation of the data. Other possibilities include separate tables for wins and losses
or listing the data from most points to fewest points scored. How data are tabulated is affected
by how the data will ultimately be used.

Exhibit 14-2 provides a graphical representation of the data. In this figure, the points per game
are plotted and the data points connected. This graphing technique allows you to see trends in
the data. This type of plot is useful when presenting data that represents a population of data at a
single point over time. The graph will give you a quick indication if the values are increasing,
decreasing, or remaining constant. One example is the plot of survey results of contamination
levels in a room over a time period. The plot can tell you if the levels are remaining constant or
changing and may trigger actions depending on the trend (e.g., decontaminate the area, upgrade
the protective clothing requirements).
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Exhibit 14-1
Points Scored by Basketball Team

Game # Points WorlL? Game # Points Worl?
1 104 w 15 105 "%
2 101 w 16 107 \'Y
3 99 W 17 98 w
4 132 w 18 84 L
5 118 w 19 99 L
6 109 W 20 92 L
7 113 w 21 119 W
8 121 W 22 119 \'"%
9 97 W 23 109 \'Y
10 118 W 24 83 L
11 119 \'% 25 98 w
12 86 L 26 109 W
13 118 w 27 94 w
14 95 L

Exhibit 14-3 presents a different representation. In this figure, the numbers of points are divided
into bins, each representing a spread of nine or ten points. Then, the numbers of games where
points were scored in that bin are indicated. This type of graphical presentation is called a
histogram. A histogram is used to show the distribution of data over the range of values. Exhibit
14-3 shows that for most games, the team scores between 93 and 122 points. A common
distribution is a normal distribution. The classic example of this distribution is the bell curve for
grades. Exhibit 14-4 presents a normal distribution.

Numerical Descriptions of Data - Tendency

Graphical and tabular data presentations provide some insight to populations, There are also
numerical descriptions for data populations. These descriptions summarize the data in terms of
its tendency and variability. Measures of tendency include mean, median, and mode and are
discussed below. Variability is measured in terms of variance and standard deviation and is

discussed in a later section.

The mean is the most common numerical description. The mean is the arithmetic average of the
values in a data set. Each data set has only one mean. The mean is calculated by the following:

h

Sx

i=1

/1:
n
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Exhibit 14-2.
Line Plot of Points per Game
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Exhibit 14-3.
Histogram of Points per Game
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Exhibit 14-4.
Normal Distribution
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0
where,
nw = arithmetic mean of a set of values, X1, X2, X3,... Xp,
n = number of values in the set

In our data set presented in Exhibit 14-1, the team averaged 105.4 points per game over the

27 games presented in the data. In other words, the mean of the population presented in that
Exhibit is 105.4 points. Although a data set has only one mean, a population can be subdivided
and means determined for the subsets. For example, our basketball team averaged 109.9 points
per win and 89.8 points per loss over the 27 games.

The mean of a population is affected by extreme values. The value of the mean can change
greatly if extreme data points, or outliers, are added or excluded. The smaller your data
population, the more it is affected by outliers. For example, if our basketball team scores 132
points in Game 28, then its average increases a point per game from 105.4 to 106.4 points.
Compare this increase to the increase after the team scored 132 in Game 4. The team’s average
increased almost eight points per game, from 101.3 to 109 points. (

The mean from subsets can be combined to determine the mean for the larger population. The
following expression is used to combine means. Caution: You can not simply sum the means
for each subset and divide by the number of subsets. The means must be “weighted” by the
number of data points in the subset (“n” and “m” in the equation that follows).

(Zn:xl.tn) + (ixjom)
u: i=1 Jj=1

n+m
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For example, [(109.9 points per win) * (21 wins) + (89.8 points per loss) * (6 losses)] / 27 games
= 105.4 points per game, our average for the entire population.

The mean can be used for descriptive or inferential statistics. In our example, the mean describes
the exact average of the number of points over those 27 games. However, given an 82 game
season, we might infer that the team would score 8,643 points over the course of the scason.

This total is the product of the average, 105.4 points per game, and the number of games, 82. Of
course, our average is based on the team’s performance over the first 27 games. Many things can
happen - injuries, trades, and uneven schedules - that can impact a team’s performance over the
course of a season. To more accurately infer the total points scored over an 82-game season from
the results of 27 games, we would need to randomly select 27 games from the population of 82
results. Of course, all 82 games would have to be played before the random subset could be
selected. When selecting a subset of a population to represent the population as a whole, care
must be taken. Improperly selecting a subset can bias the inferences about the population.

Why select a subset to represent the population? Usually, you select a subset of a population to
represent the entire population when the entire population is too large to manage. An every-day
example of this is polling data. A poll might say that 65 percent of American voters approve of a
candidate for president. The pollster did not ask every voter and determined that 65 percent of
them approved of the candidate. Instead, the pollster selected a representative subset of the
population of voters. The pollster did have to make sure that the subset was representative. A
subset made up entirely of college students might yield very different results compared to a
subset made up entirely of members of local Veterans of Foreign War group. Similarly, if a
health physicist were determining the levels of removable contamination on the floor of a room,
they would sample a subset of the room. If the room is 400,000 cm?, they might take forty 100-
cm? smears to represent a room. As with the pollster, the health physicist would not want to bias
the samples. The smears would be taken randomly throughout the room, not just in one corner of
the room.

The mean is not the only measure of tendency. The median and mode of a data sct provide
insight into the population. The median is the central value. Fifty percent of the data values are
less than the median and fifty percent are greater than the median. The mode is the most frequent
or probable data value.

Used in conjunction with the mean, the median and mode help to describe the distribution of
data. For a set of data whose median and mode are greater than the mean, the data distribution is
skewed to the right; more data points have values greater than the mean. This type of skewed
data occurs if there are outliers on the low end of the data range. For a set of data whose median
and mode are less than the mean, the data distribution is skewed to the left - more data points
have values less than the mean. This type of skewed data occurs if there are outliers on the high
end of the data range. If the mean, median, and mode are close to the same value, then the data
set resembles the bell curve discussed earlier.
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Numerical Descriptions of Data - Variability

Variability provides another descriptive measure of a data set. The variability describes the range
of the data set and the relative frequency of the data in that range. Common measures of
variability when managing health physics data are variance and standard deviation.

Variance is a measure of the numerical difference between a data point value and the mean of the
data set. The variance is expressed as follows:

n
2
Z(xi - H)
g2 =iz
n—1
where,
2 .
s° = wvariance
i = arithmetic mean of a set of values, x, X3, X3,... Xp,
n = number of values in the set

Standard deviation of a population or subset of data is the square root of the variance. In our
example data set in that Exhibit 14-1, the variance of the data set is 158.4 and the standard
deviation is 12.6. Note that the square root of 158.4 has both 12.6 and -12.6 as answers. The
standard deviation is expressed as the positive square root of the variance.

The standard deviation is a convenient measure for data that are normally distributed, that is, data
that exhibits a bell curve. As an approximation, 68 percent of the data in a normally distributed
set of data lie within + one standard deviation from the mean, 95 percent of the data lie within £
two standard deviations from the mean, and nearly all of the data lie within + three standard
deviations from the mean.

If we again look at the data set in Exhibit 14-1, we have a mean of 105.4 and a standard deviation
of 12.6. From Exhibit 14-3, we see that the data resembles a bell curve (although it is depressed
in the center). If we use the approximation from above, we would expect 68 percent of the point
values to be in a range of 105.4 + 12.6 points, or 92.8 points to 118 points. We would expect 95
percent of the point values to be in a range of 105.4 + 25.2 points, or 80.2 points to 130.6 points.
If we take 68 percent of 27 games, we get 18 games while 95 percent of 27 games is 26 games.
When you examine the data in Exhibit 14-1, you see that 18 of the point values lie in the range of
92.8 points to 118 points, while 26 point values lie in the range of 80.2 points to 130.6 points.

Although it worked out exactly for our data set, note that the above rule is only an
approximation. It can be used to test if a data set is normally distributed or estimate the range of
a population if you know its mean and standard deviation and know that the population is
normally distributed. For example, the next chapter will discuss counting statistics. Radioactive
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decay is a random event and the results of counting a sample are a normal distribution of values,
described by a mean and standard deviation. The health physicist can use the counting result (the
mean) and the standard deviation to determine a complete estimate of the activity of a sample,
including a measure of the uncertainty in the activity estimate.

Summary

To summarize this overview of basic concepts of statistics lets leave the basketball court and

return to our original example, our 50 drums of contaminated soil. Exhibit 14-5 presents the

contact dose rates, the net cesium-137 and uranium-235 concentrations for 50 drums.

Exhibit 14-5.
Data on Soil Drums

Drum # |Dose Rate,| Cs-137, U-235, Drum# |Dose Rate,| Cs-137, U-235,
mR/hr pCi/g pCi/g mR/hr pCi/g pCi/g
1 9 20100 12 26 22 20600 2
2 8 18100 8 27 48 20700 3
3 11 22500 9 28 10 20800 8
4 9 19200 19 29 10 20900 7
5 10 21000 25 30 9 18900 11
6 9 19300 22 31 10 21900 13
7 19 19400 11 32 10 21000 25
8 9 19500 12 33 55 21050 0
9 9 18200 22 34 9 20100 19
10 10 21200 19 35 9 20050 13
11 9 19600 25 36 10 20150 13
12 24 19700 4 37 28 18400 2
13 72 19800 2 38 10 21400 15
14 9 19900 8 39 9 20100 11
15 9 20000 10 40 9 20050 29
16 9 19000 19 41 10 20150 22
17 10 22050 17 42 31 20200 3
18 9 20100 23 43 9 20000 6
19 10 20200 29 44 9 18500 29
20 10 20300 21 45 10 21500 29
21 37 20400 3 46 10 20180 8
22 10 20500 18 47 9 20020 15
23 9 18300 16 48 9 20100 13
24 10 21300 14 49 9 20100 8
25 10 21800 20 50 9 18800 7
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What is the average contact dose rate for the drums? What are the median, variance, and
standard deviation of the contact dose rates? What can you conclude about the dose rates of the
drums? What are the average Cs-137 and U-235 concentrations for the drums? What are the
median, variance, and standard deviation of the concentrations? What can you infer about the
concentration of Cs-137 and U-235 in the drums?

Step 1: Isolate the unknown variable:

Z(-x,’ - ,u)z
g2 ==L
n-1

S=\/S2

Step 2:  Simplify the equation:
The equations are in simplified forms.
Step 3: Validate the problem set-up:

The mean and standard deviation have the same units as the population. The units for
variance are the square of the units of the population. v/

Step 4: Plug in known quantities and Step 5: Solve for the unknown:

Drum Dose Rate, mR/hr X-m (x-m)?
1 9 -5.46 29.81
2 8 -6.46 41.73
3 11 -3.46 11.97
4 9 -5.46 29.81
5 10 -4.46 19.89
6 9 -5.46 29.81
7 19 4.54 20.61
8 9 -5.46 29.81
9 9 -5.46 29.81
10 10 -4.46 19.89
11 9 -5.46 29.81
12 24 9.54 91.01
13 72 57.54 3310.85
14 9 -5.46 29.81
15 9 -5.46 29.81
16 9 -5.46 29.81
17 10 -4.46 19.89
18 9 -5.46 29.81
19 10 -4.46 19.89
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20 10 -4.46 19.89

21 37 22.54 508.05
22 10 -4.46 19.89
23 9 -5.46 29.81
24 10 -4.46 19.89
25 10 -4.46 19.89
26 22 7.54 56.85
27 48 33.54 1124.93
28 10 -4.46 19.89
29 10 -4.46 19.89
30 9 -5.46 29.81
31 10 -4.46 19.89
32 10 -4.46 19.89
33 55 40.54 1643.49
34 9 -5.46 29.81
35 9 -5.46 29.81
36 10 -4.46 19.89
37 28 13.54 183.33
38 10 -4.46 19.89
39 9 -5.46 29.81
40 9 -5.46 29.81
41 10 -4.46 19.89
42 31 16.54 273.57
43 9 -5.46 29.81
44 9 -5.46 29.81
45 10 -4.46 19.89
46 10 -4.46 19.89
47 9 -5.46 29.81
48 9 -5.46 29.31
49 9 -5.46 29.81
50 9 -5.46 29.81
Sum: 723 8260
Average: 723/50=14.46
Variance: 8260/(50-1) = 168.58
Standard deviation: 12.98

The above calculation is for the dose rate of the drums. Note that you must calculate the mean for
the population before you can calculate the variance and standard deviation.

It can be repeated for the concentration of cesium-137 and uranium-235 in the drums. The mean
for the cesium-137 concentration is 20,142 pCi/g, the variance is 1,020,400 (pCi.g)* and the
standard deviation is 1010 pCi.g. The mean for the uranium-235 concentration is 14 pCi/g, the
variance is 67 (pCi.g)* and the standard deviation is 8 pCi.g.

Step 6: Conduct reality check:

The values for mean, variance, and standard deviation can be calculated using most of
today’s scientific calculators or with built-in functions found in spreadsheet software. v’
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CHAPTER 15
COUNTING STATISTICS

Since radioactive disintegration is a statistical process, it is not surprising that mathematical
statistics are frequently applied to the data produced in counting operations. The major
applications are the fundamental statistics of standard deviation and other measures of
dispersion.

In analytical work, we are only able to run a small, but finite number of analyses. Statistics
enable us to give a quantitative description of our small number of analytical results and to
give an estimated description of the entire population (the infinite number of possible
analytical results).

One desirable characteristic for describing a sampling from a population is the scatter of the
results about the measured mean (average) value. The simplest measure of scatter is the
range; that is the largest and smallest values obtained. The range does not show dispersion as
well as other measures, but is simple and is widely used for describing a small number of
analyses. In radiation protection work we deal with more sophisticated estimates of
population characteristics. As the number of items in our sample increases, our estimates
approach the true value of the parameter.

Counting data belong to a population where the events are discrete and appear in relatively
small number compared to the number that could appear in the time available. This
population is best described by the Poisson distribution. Any count is a sample from this
population and is a partial description of the population.

The sample standard deviation for a Poisson distributed population is given by
s= \/; Equation 15-1

The probability of the next evaluation of a count rate being it s is 0.683. Other ranges of
the standard deviation (s) show the following probabilities:

e 0.6745 s = 0.500 probability
e 1.000s=0.683

e 1.6455=0.90

e 1.960s=0.95

e 2.000s=0.955

e 2580s=0.99

e 3.000s5=0.9974

e 4.000s=0.9999
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Since counting data follow the Poisson distribution,
s=+N since N = x Equation 15-2
where,

N = the number of counts obtained

i

s = standard deviation of the count. In the same way, N/t is the count rate {R} for a
determination, and

Sp= " Equation 15-3

is the standard deviation of the count rate. This can also be written,
sg=VR/t Equation 15-4

When the counter background is of importance, an additional step is required to calculate the
standard deviation of the net count. This step is based on the fact that the variance (the
square of the standard deviation) of the difference of the two independent variables is the sum
of their variances. Thus,

sy =82 +s’ Equation 15-5

where,

sy = standard deviation for the net counts
s, = standard deviation for background counts
standard deviation for the gross counts (sample + background)

8¢

It is obvious that the value of s , must be at least s , V2, and that the background counting
rate is one limiting factor in low level counting. For equal counting times, the standard
deviation for the net count rate is,

N,+ N, )
s = — Equation 15-6

netrate
t

where,

N, = the net background counts
N G
t

the net gross counts
counting times for both gross and background
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For unequal counting times,
S =, [—+— Equation 15-7

where,

R , = background count rate
t, = background count time
R ; = gross count rate
t, = gross count time

Problem 15-1

What is the standard deviation of the count rate that results from a count of 3600 counts in 10
minutes?

Step 1: Isolate the unknown variable:

s = %
BV
Step 2: Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:
N/A

Step 4 Plug in known quantities:
10
Step 5:  Solve for the unknown:
Sp= «/gg =6 cpm

Step 6: Conduct reality check:

Check the arithmetic.
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Problem 15-2

What is the standard deviation of the net count rate that results from a sample count rate of
800 cpm for a 10 minute count and a background count rate of 1 cpm for a 1 hour count?

Step 1: Isolate the unknown variable:

Ry, R;

S emare =

tB tG
Step 2: Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:
N/A
Step 4: Plug in known quantities:

1 800

S =
netrate 60 10
Step 5:  Solve for the unknown:

= 8.95 cpm

8 netrate
Step 6: Conduct reality check:

Check the arithmetic.
Problem 15-3
A preliminary count of a sample resulted in an approximate count rate of 50 cpm. A
subsequent background count resulted in 100 counts in 2 hours. Using a 95% confidence
limit, calculate the required length of a count so that the true net count rate will be within
20% of the true sample net count rate.
Step 1: Isolate the unknown variable:

20% of 50 =10 cpm

2s =10 cpm

netrate
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5 nefrate = 5 Cpm
— RB RG
S petrate +
tB tG

Step 2: Simplify the equation:

Step 3: Validate the problem setup:
N/A

Step 4: Plug in known quantities:

Step 5:  Solve for the unknown:
t .= 2 minutes
Step 6: Conduct reality check:

Check the arithmetic.

The optimum division of counting time between the gross (sample + background) and
background is given by

tB ‘RB -
— = Equation 15-8
tG RG

Problem 15-4

What would be the optimum sample and background count times for the sample in problem
15-2 if the total time allowed for the procedure were 60 minutes?
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Step 1: Isolate the unknown variable:

Iy Ry

e \Rq
Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

N/A

Step 4: Plug in known quantities:

I L=0'04
i V800
t,=0.04t,
t, +tg =60

Step 5:  Solve for the unknown:

1.04t,=60 =t =57.7 minutes = t , = 2.3 minutes

Step 6: Conduct reality check:
Check the arithmetic.

Often we are interested in knowing 1f the difference between a sample and background is due
to actual activity in the sample, or due to statistical fluctuations of the background. The

technique to be described next reports the probability that the sample count rate is a result of
statistical fluctuations of the background count rate. If this probability is very small, then we
assume that the sample count is not a result of statistical fluctuations, but rather is a result of

activity present in the sample.

In using this test, a confidence limit is chosen. Usually, the 95% confidence limit is selected.
As shown earlier in this chapter, this corresponds to approximately two standard deviations.
The difference of the sample and background rates is assumed to be 0. Then the probability
of obtaining the actual difference is calculated. If this probability is less than or equal to 5%
we reject this assumption and assume that the sample contains activity above background.
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Problem 15-5

An air sample counted for 10 minutes resulted in 600 counts. A 30 minute background count
resulted in 1500 counts. At the 95% confidence limit, is there any radioactivity in the air?

Step 1: Isolate the unknown variable:

R = —6~9—(-)---_~1500ﬁ 10cpm

10 30

“ Nt ¢ 10 30

Step 2:  Simplify the equation:

The equations are already simplified.
Step 3: Validate the problem setup:

N/A

Step 4: Plug in known quantities:

s

e - 10 _ 35

s 2.8

net

Step 5:  Solve for the unknown:

R . e
—2>2 . .@ 95% there is activity in the sample

S

net
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CHAPTER 16
AIR SAMPLING AND COUNTING

For a reported value of radioactive material concentration in air to be meaningful, the
following factors should be considered:

¢ Volume of Air Sampled
Nominally,
Volume = flow rate [volume/minute]  sampling time [minutes] Equation 16-1

If the flow rates at the beginning and the end of the sampling time are different, the average
of the two is generally used:

Volume = % (initial flow rate + final flow rate) e sampling time Equation 16-2

It should be remembered that if only a portion of the total filter is to be counted, this must be
included in the calculations of the volume of air sampled.

¢ Collection Efficiency

Although obviously a function of particle sizes distribution, the particulate collection
efficiency of a glass fiber filter is assumed to be 100%. If this assumption is made in the
evaluation of air samples, it should be made explicit in the presentation of the results. In

many cases it will not be a valid assumption, and tabulations of filter efficiencies should be
consulted for the appropriate efficiencies to use in the air concentration calculations.

e Counting Efficiency

For an internal proportional counter, this is usually taken to be 50%. By making this
assumption, the ncpm may be roughly equated to the pCi in the sample.

¢ Self Absorption in the Sample
Unless the sample is unusually heavy (10 mg/cm®) the self-absorption can be assumed to be

negligible. Any self-absorption present is in part offset by the fact that the counter efficiency
may be slightly higher than 50%.
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Activity Calculations

The measurement of airborne radioactivity will often require calculation in order to
determine the activity concentration. This calculation may require a consideration of the
buildup of activity on the collection medium. This is shown on Exhibit 16-1.

General Calculations

Two general considerations may be applicable to all activity concentration calculations.
These are:

e sample counting
* decay time between the end of sampling and the mid-point of the counting.

The general expression for determining the quantity of a radionuclide on a collection medium
is:

__CR Equation 16-3
= uation 16-
1=k (2.22) 4
Exhibit 16-1.
Activity Relationships in Sampling
120 - N .
END OF SAMPLING
100 + SRR
80 + o SHORT LIVED
E
§ 60 4
g
B LONG LIVED
40 +
20 ¢
0+ ;
0 1 2 3 4 5 6 7 8 9

TIME
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where,

q = quantity of nuclide on the collecting medium [pCi]

CR = net count rate due to the radionuclide in the sample [ncpm]

CE = counting efficiency of the counter for the specific radionuclide [ncpm/dpm]

2.22 = conversion factor [dpm/pCi]

In instances where short-lived radionuclides are being measured and if the activity at the time
of sampling is to be determined, a correction for the radionuclide decay between the end of

the sampling and the mid-point of counting must be made. See Exhibit 16-1. Equation 16-4
indicates this correction factor.

q corrected = q/e - Equation 16‘4

where,

= quantity of radionuclide at the end of sampling [pCi]

q corrected

A = decay constant for the radionuclide [time ']
t = time period between end of sampling and midpoint of counting [time]
q = quantity of radionuclide on the collecting medium

Specific Calculations

The activity calculations involved in the measurement of airborne radioactivity depend upon
many factors. Two of the most important factors are:

e the relationship of the quantity of the radionuclide being sampled with time (constant or
variable)

o the half-life of the radionuclide being sampled.

CONSTANT CONCENTRATION - LONG HALF-LIFE

When the concentration of the radionuclide in the environment is constant, and when it has a
long half-life in comparison to the sampling time, the expression shown in Equation 16-5 is
applicable for buildup of activity on the collection medium. The long-lived activity curve in

Exhibit 16-1 depicts this case.

q=CeFe Eet Equation 16-5
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where,

q = quantity of radionuclide on the collecting medium [pCi]

C= concentration of radionuclide in the air being sampled [pCi/unit volume]
F = air flow rate through the collecting medium [volume/time]

E = collection efficiency for radionuclide under sampling conditions [fraction]
t = sampling period [time]

In this case the decay of activity on the collecting medium during sampling is of no
significance due to the long half-life of the radionuclide being collected.

CONSTANT CONCENTRATION - SHORT HALF-LIFE

When the half-life of the radionuclide being sampled is less than or not too much greater than
the sampling time, consideration must be given to the decay of the radionuclide on the
collecting medium during sampling. It is assumed that the activity of the radionuclide in the
environment is constant, i.e. environmental equilibrium exists. The sampling relationship is
depicted by the short-lived activity (% equilibrium) curve in Exhibit 16-1. In this case
Equation 16-6 is applicable.

CeFeoF u .
q= — (1-e™) Equation 16-6
where,

all variables are as previously defined.

When the half-life of the radionuclide being sampled is approximately equal to or somewhat
greater than the sampling time, Equation 16-6 is applicable. When the half-life is much less
than the sampling time, Equation 16-6 can be reduced to:

B Cel e |

q 1 Equation 16-7

A ”’rule of thumb” for deciding when equation 16-7 is applicable is when the half-life is less
than or equal to 1/7 the sampling time. For a ratio of 1/7, the error is less than one per cent.
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Problem 16-1

If V4 of a filter paper from a 1-hour air sample with initial flow rate of 10 liters/min and final
flow rate of 8 liters/min is counted, what air volume should be used in the concentration
calculation?

Step 1: Isolate the unknown variable:
V=( R, -|2-R2 )t

Step 2:  Simplify the equation:
The equation is already simplified.

Step 3: Validate the problem setup:

] liters
Liters = s min

min
Step 4: Plug in known quantities:

10+8

V=( )60

Step 5:  Solve for the unknown:

V = 540 liters, but since only % of the filter was used V to be used in the calculation
is 540 /4 = 135 liters

Step 6: Conduct reality check:

Check the arithmetic.
Problem 16-2
If a radionuclide of half-life 5 minutes is counted for 10 minutes, immediately after sampling
and gives 50 ncpm on an instrument with 50% efficiency, what is the true activity in [pCi] at
the end of the sampling period?

Step 1: Isolate the unknown varnable:

CR i}
q corrected = / ¢ “
CE(2.22)
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Step 2:  Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:

ncpm

Ci= —— 27
pH ncpm .dpm

dpm  pCi

Step 4: Plug in known quantities:

0.693e5
5

.0 Je
q corrected 0.5 R 2‘22

Step 5:  Solve for the unknown:
Q porrecied = 43.0/0.5 =90 pCi
Step 6: Conduct reality check:
Check the arithmetic.

Problem 16-3

What is the airborne concentration of a radionuclide in [pCi/l] that yields a count rate of 10
dpm from a 1-hour sample, sampled at 1 1/min?

Step 1: Isolate the unknown variable:

concentration =

~

Step 2:  Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:

pCi_ pCi
[ /
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Step 4: Plug in known quantities:
concentration = 10 /60
2.2

Step 5:  Solve for the unknown:
concentration = 0.08 pCi/l
Step 6: Conduct reality check:
Check the arithmetic.
Problem 16-4

What is the true airborne concentration of the radionuclide in problem 16-3, if at the end of
the sampling period the radionuclide is only at 50% equilibrium?

Step 1: Isolate the unknown variable:

q
Sfractionofequilibrium

q corrected

Step 2:  Simplify the equation:

The equation is already simplified.
Step 3: Validate the problem setup:

pCi/l =pCi/l
Step 4: Plug in known quantities:

_ 0.08
q corrected 0 5

Step 5:  Solve for the unknown:

q corrected = 0' 1 6 pCi/l

Step 6: Conduct reality check:

Check the arithmetic.
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SERIES DECAY RADIONUCLIDES

Many airborne radionuclides exhibit series decay relationships with their daughters. In some
instances the daughters are collected and analyzed, and the activity of the parent
radionuclides are then calculated from those results.

As shown in Exhibit 16-1, prior to the parent and daughters reaching radioactive equilibrium
the daughter activities are increasing. Exhibit 16-2 shows the buildup of alpha activity due to
Radon and Thoron daughters and other long-lived alpha emitting radionuclides. Equilibrium
conditions imply that the radioactivities of all members of the chain are equal, as shown for
radon and thoron daughters in Exhibit 16-2. The increasing activity of the daughter being
collected may have to be taken into account in the activity calculations if the sampling is
done during a period prior to the attainment of radioactive equilibrium. When possible, it is
desirable to sample at equilibrium conditions. This can be used to our advantage in cases
like when we are sampling for radon daughters only; where a sampling period of only a few
hours is desirable because then the interference from thoron activity will be small and may be
neglected. Under equilibrium conditions the previously discussed equations are applicable.

Exhibit 16-2.
Alpha Activity On Air Sample

120

0+

12 22 B 8 0 2 & B pes 10 =2 1z )
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Many times a need arises for a simple and more rapid method for the determination of gross
long-lived beta radioactivity in air. One such method is described below. It affords one of the
simplest means of disentangling, within a reasonable length of time, the activity due to
natural radionuclides from that contributed by the artificial radionuclides.

The heart of this method is the selection of the time at which the sample is to be counted.
The natural activity of the air is largely a mixture of Pb-214 and Pb-212. The former has a
half-life of 26.8 minutes and accounts for at least 90% of the normal air activity. The latter
radionuclide has a half-life of 10.6 hours.

In this method, a period of time equal to 8 half lives of the 214 isotope is permitted to elapse
before the sample is counted for the first time. This ensures that at least 99.5% of this
component will have decayed. The 10.6-hour component may not be dispatched so easily,
for even 7 half-lives would delay obtaining the results for three days. Instead, a calculation
based upon two counts separated by approximately 24 hours is applied to remove the fraction
of the total count due to the 212 isotope.

The total cpm (C | ) at time (t, ) is the sum of the cpm due to the long-lived activity (C ;)
and the cpm remaining from the 212 isotope collected (Coe ™™ ):

C,=C,e™™+C, Equation 16-8
Similarly
C,=C,e™+C, Equation 16-9

Solving these equations for C;, the expression becomes:

C. - Cle_w

Cu= — Equation 16-10

l1-€
where,

At = the time interval between the two counts C, and C, . This is the perfectly general form

of the expression and may be applied to any time interval. However, if a specific At is
agreed upon, a further simplification may be made. For, and only for,t, =4 hoursand t, =

28 hours:
C, =126(C,-0.21C,) Equation 16-11

Thus a sample taken at mid-morning will be counted first at mid-afternoon and the final
results will be available upon making the second count at the same hour the next afternoon.
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Problem 16-5
What is the count rate of the long-lived component of an alpha air sample contaminated with
radon and thoron daughters, if the 4 hour count rate is 400 ncpm and the 28 hour count rate is
100 ncpm?
Step 1: Isolate the unknown variable:
C,=126(C,-021C))
Step 2:  Simplify the equation:
The equation is already simplified.
Step 3: Validate the problem setup:
cpm = cpm
Step 4:  Plug in known quantities:
C,,=1.26(100 — 0.210400)
Step 5: Solve for the unknown:
C,,=20.16 ncpm
Step 6: Conduct reality check:

Check the arithmetic,
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CHAPTER 17
TRIGONOMETRY

Trigonometry is the study of angles and the relationship between angles and the lines that
form them. Trigonometry is used in Health Physics to solve problems related to external
dosimetry, counting geometry and gamma radiation interactions. For example, you can use
the basics of trigonometry to determine the dose rate from a line source of radiation, such as
a pipe carrying radioactive liquid.

The fundamental concepts of trigonometry are built around the triangle. As shown in Exhibit
17-1 below, a triangle is a plane figure formed using straight line segments (4B, BC, CA) to
connect three points (4, B, C) that are not in a straight line. Some mathematical
characteristics of a triangle include:

e The sum of the measure of the three angle of a triangle is 180 degrees (°)
e The sum of the length of any two sides is greater than the length of the third side
e A triangle with an angle equal to 90° is known as a right triangle

The Greek mathematician Pythagorus develop a theorem, or rule, related to right triangles.
The Pythagorean theorem can be used to determine the length of on side of the right triangle
when you know the length of the other two sides. The term hypotenuse is used to describe
the side of a right triangle opposite the right angle. Given that Triangle ABC is a right
triangle and the measure of angle ¢’ is 90°, the line segment C is the hypotenuse of the
triangle in Exhibit 17-1. In right triangle ABC, the two sides (other than the hypotenuse) are
referred to as the opposite and adjacent sides. These two terms are used when dealing with
the internal angles of the triangle. Whether the side is the “opposite” or “adjacent” side
depends on the angle you are discussing. In Triangle ABC, line segment A is the opposite
side of angle a’ and line segment B is the adjacent side. This nomenclature is easy to
remember — the “opposite” side of a given angle is the side of the triangle opposite the given
angle.

Exhibit 17-1.
Triangle ABC
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The Pythagorean theorem states that in any right triangle, the square of the length of the
hypotenuse (C) equals the sum of the squares of the lengths of the other two sides (A and B):

C = JA4+B Equation 17-1

The above equation can be solved for any of the three sides, when the length of the other two
sides is known.

Now we can use the right triangle and a basic feature of the triangle to determine the
unknown values for the length of sides or the measure of the angles. Remember that we said
that the sum of the angle of a right triangle is 180°. Since we are using a right triangle, and
we know that one of the angles is 90°, then we know that the sum of the measure of the other
two angles is 90°. Understanding this feature of the right triangle, we can solve for the
unknown angles if we know the length of two sides of a right triangle and vice versa. We
will use the three basic trigonometric functions: sine, cosine, and tangent.

In Exhibit 17-2, side a is the opposite side of the angle 6 and side # is the adjacent side of the
angle 0. The terms hypotenuse, opposite side, and adjacent side are used to distinguish the
relationship between an angle of a right triangle and its sides. The relationships between the
length of the sides and the three trigonometric functions are:

lengthof th te si
Sneg = & _ lenst of the opposite side Equation 17-2a
¢ length of the hypotenuse
Cosine 8 = b - length of the adjacent side Equation 17-2b
¢ length of the hypotenuse
lengthof th jte sid
Tangent & = 2 - & of theopposite side Equation 17-2¢

b length of the adjacent side

Exhibit 17-2.
Right Triangle
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The value of any of these trigonometric functions can be determined with a calculator with
trigonometric functions. To find the sine, cosine, or tangent of any angle, enter the value of
the angle into the calculator and press the desired function key: SIN for sine, COS for cosine,
and TAN for tangent.

In solving health physics problems, you generally know the length of the sides of the right
triangle, rather than the measure of the angle and it is that measure that you are trying to
determine. To solve for the measure of the angle when you know the value of the
trigonometric function (in other words, the length of two of the sides of the right triangle);
you use the inverse trigonometric functions. The inverse trigonometric function, also known
as the arc function, defines the angle based on the value of the trigonometric function. For
example, the sine of 30° equals 0.5; thus, the arc sine of 0.5 is 30°. The inverse of the sine is
written as arcsine or sin”. Either of these notations can be read as “the measure of the angle
whose sin is...” The notation arc can be used as a prefix to any of the trigonometric
functions. Note that the “-1” is not used to mean the mathematical inverse, that is 1/sine.
The mathematical inverses of the sine, cosine, and tangent are the secant, cosecant, and
cotangent, respectively. The “-1” means the angle whose sine is. The arc functions are
usually determined with a calculator by entering the value of the function and then pressing
the inverse key (INV) then the trigonometric function (for example, SIN).

The size of an angle is commonly measured in degrees. However, in some applications the
size of an angle is measured in radians. A radian is defined in terms of the length of a portion
of the circle (an arc) subtended by an angle at the center of a circle. An angle whose size is
one radian subtends an arc whose length equals the radius of the circle. Exhibit 17-3 shows
angle BAC whose size is one radian. The length of arc BC equals the radius  of the circle.
The size of an angle, in radians, equals the length of the arc it subtends divided by the radius.
One radian equals approximately 57.3 degrees. There are exactly 2 n radians in a complete
revolution. Thus 2 & radians equal 360 degrees; 7 radians equal 180 degrees. Although the
radian is defined in terms of the length of an arc, it can be used to measure any angle. Radian
measure and degree measure can be converted directly. The measure of an angle in degrees
is converted to radians by multiplying by 7/180°. Conversely, the measure of an angle in
radians is converted to degrees by multiplying by 180°/,

Exhibit 17-3.
Radian Measure
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CHAPTER 18
EXTERNAL DOSIMETRY

Up to this point in the book we have only talked of gamma dose rates and fluxes from point
sources. Mastery of radiation protection problems involving point sources is extremely
important, but “out in the plant” much geometry other than point sources must be addressed.
At the first level of complexity, that is, where there is uniform linear, area or volumetric
contamination concentrations, the handling of line, area or volume sources is not that much
more difficult than what has already been demonstrated for point sources. This chapter will
start with the point source, addressing it in a manner consistent with the approach that must
be used for the more complex one, two and three-dimensional source geometry’s.

These more advanced methods deal with external gamma dosimetry problems in terms of
fluxes, then convert the calculated fluxes to either exposure or dose rates after the appropriate
flux calculations have been completed. The relationships between the flux incident on the
material receiving the exposure or dose of interest is given in Equations 18-1 and 18-2:

R [R/hr] =5.08x 107 pno 1, Equation 18-1
where,
R = exposure rate [R/hr]
ue = linear absorption coefficient [cm ™' ]
I, = gamma flux [MeV/cm? /sec]

For the dose rate, the conversion factor is

medium

R [rads/hr] =5.76 x 10° ("u“—— ), Equation 18-2
medium
where,
R = dose rate [rads/hr]
p 7" = linear absorption coefficient [cm ™ ]

P meauim = density of the absorbing medium [g/cm® ]
Wp  =mass absorption coefficient [cm? /g]
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Point Source

For a point source the flux at a distance is given by the equation:

2.96x10° CE ,
= — Equation 18-3

where,
C = activity of the source [Ci]
E = energy of the activity [y Mev/ disintegration]

r = distance from source to the point of interest [cm]

Problem 18-1

What is the dose rate in water at 1 meter from a 50 Ci point gamma source that emits 1
MeV/dis?

Step 1: Isolate the unknown variable:

R=5.76x 10-5(%)10

_ 2.96x10° CE

0 2
r

Step 2:  Simplify the equation:
The equations are already simplified.
Step 3: Validate the problem setup:
Empirical equation, therefore unit analysis is not useful.
Step 4: Plug in known quantities:
1,=(2.96x 10°e5001)/(10%)*=1.48x 10’
Step 5. Solve for the unknown (using p/p from Exhibit 11-1):

R=576x10"e0.636e1.48x107=1.64 x 10°*rads/hr
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Step 6: Conduct reality check:
Make independent order of magnitude estimate.

Line Source

For a line source, with its geometry relative to the numbered points of interest as depicted in
Exhibit 18-1, the flux equations are:

AtP,
296x10°C,E :
I,= T 0,-6) Equation 18-4
where,
C, = linear activity concentration of source [Ci/unit length]
h = perpendicular distance from line to point of interest [length]
@, — 6, = angle subtended by the line source from the perspective of the point of interest
[radians] (2= radians = 360°)
At Point 2
296x10°C, E _
I, = ——m——h——-———(@1 +6,) Equation 18-5

Exhibit 18-1.
Line Source
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where,

6, + 6, = angle subtended by the line source from the perspective of the point of interest
[radians]

Problem 18-2

What is the dose rate in air 1 meter from the middle of a nonabsorbing 4 meter long pipe
filled with a 2 MeV/dis gamma emitter at a concentration of 200mCi/meter?

Step 1: Isolate the unknown variable:

R=5.76x10‘5(%)10

I, 2.96xl:9CLE ©,40,)
Step 2: Simplify the equation:

The equations are already simplified.
Step 3: Validate the problem setup:

Empirical equation, therefore unit analysis is not useful.

Step 4: Plug in known quantities:

_ 2.96x10° ¢ 20002

1 (2.21)=2.62 x 10°

I,

Step 5: Solve for the unknown:

R =576 x 10°e0.0445¢2.62x10°=6.72 x 10°rads/hr
Step 6: Conduct reality check:

Make independent order of magnitude estimate.
Disk Source

For a plane disk source of uniform activity distribution, with its geometry relative to the
numbered points of interest as depicted in Exhibit 18-2, the flux equations are:
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Exhibit 18-2.
Disk

P, d P:

At Point P,

| =206 10° EC . miny Be A2 ) HUR + 7 —d7)” +4d h ]
0"" . A4

] Equation 18-6

2h’
where,
C, = activity per unit area [Ci/cm* ]
R, = radius of the disk source [cm]
h = perpendicular distance of the point of interest from the disk source [cm]
d = perpendicular distance from the point of interest to a point directly over the center of
the disk source
AtPointP,
1,=296x 10" EC nln(R—"};h—z) Equation 18-7
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Problem 18-3

What is the exposure rate 1 meter above the center of a 4 meter diameter disk source of Co-
60 at a concentration of 1 Ci/m? ?

Step 1: Isolate the unknown variable:

R=508x 1024,

2 2
I,=2.96 x 10°EC , n( R"h*;h )

Step 2: Simplify the equation:

The equations are already simplified.
Step 3: Validate the problem setup:

Empirical equations, therefore unit analysis is not useful.
Step 4: Plug in known quantities:

4% +1°

[,=2.96x 10025010 7 ¢In———=2.32x 10" In(17)
1

=6.59x 10"
Step 5: Solve for the unknown (using p/p from Exhibit 11-1):
R =5.08x 10 2¢0.0636¢1.29x107 6.59x10"°=2 75 x 10° R/hr
Step 6: Conduct reality check:

Make independent order of magnitude estimate.

Spherical Source

For a spherical source, with uniform volumetric concentration, the flux equations are:
At the sphere’s center

I,=296x10°C, E4nR,) Equation 18-8
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where,

C , = activity per unit volume of the source [Ci/cm ]
R, = radius of the spherical source [¢cm]

At the surface of the sphere
1,=296x10°C,E(2nR ) Equation 18-9
Problem 18-4

What is the dose rate in air at the surface of a nonabsorbing 4 meter diameter sphere filled
with Ar-41 at a concentration of 10 Ci/m> ?

Step 1: Isolate the unknown variable:

R =5.76x 10"5(-“15)10

1,=2.96x10°C, EQ2nR )
Step 2: Simplify the equation:

The equations are already simplified.
Step 3: Validate the problem setup:

Empirical equations, therefore unit analysis is not useful.
Step 4:  Plug in known quantities:

1,=2.96x 10°¢1001.29¢ (207 02)=48x 10"

Step 5:  Solve for the unknown (using p/p from Exhibit 11-1):
R=5.76x 107° «0.0636 ¢ 4.8x10"'= 1.76 x 10 °rads/hr
Step 6: Conduct reality check:

Make independent order of magnitude estimate.
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Infinite Right Cylinder Source

For an infinite right cylinder, with uniform volumetric concentration, with its geometry
relative to the points of interest as depicted in Exhibit 18-3, the flux equations are:

On the cylinder surface

1,=296x10°C E (4nR ) Equation 18-10
where,
R, = cylinder radius [cm]
Point on cylinder axis

I,=296x10°C E@2n’R,) Equation 18-11
Problem 18-5

What is the exposure rate on the surface of an infinite right cylinder of radius 1 meter filled
with a 1.5 MeV/dis gamma at a concentration of 10Ci/m°> ?

Exhibit 18-3.
Cylindrical Source
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Isolate the unknown variable:

R=5.08x1074,

1,=2.96x 10°C, E(47R,)

Simplify the equation:

The equations are already simplified.

Validate the problem setup:

Empirical equations, therefore unit analysis is not useful.
Plug in known quantities:

1,=2.96x10°e10e1.5¢ (407 00.5)=2.79x 10"

Solve for the unknown (using p/p from Exhibit 11-1):
R =5.08x 107200.063601.29x107 2.79x10" = 1.16 x 10°R/hr
Conduct reality check:

Make independent order of magnitude estimate.
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CONVERSION FACTORS

1 terabecquerel
1 gigabecquerel
1 megabecquerel =1 MBq
1 kilobecquerel

1 becquerel

1 kilocurie

1 curie

1 millicurie
1 microcuric
1 nanocurie

1 sievert

1 millisievert
1 microsievert
1 nanosievert

1 kilorem

1 rem

1 millirem
1 microrem

1 kilogray

1 gray

1 milligray
1 microgray

1 kilorad

1 rad

1 millirad
1 microrad

ACTIVITY
=1 TBq = 27 curles
=1GBq = 27 millicuries

= 27 microcuries

=1kBq = 27 nanocuries

=1Bq = 27 picocuries

=1kCi = 37 terabecquerels

=1Ci = 37 gigabecquerels

=1 mCi = 37 megabecquerels

=1 uCi = 37 kilobecquerels

=1 nCi = 37 becquerels
DOSE EQUIVALENT

=18v =100 rem

=1 mSv = 100 millirem

=1 uSv = 100 microrem

=1nSv = 100 nanorem

=1 krem = 10 sieverts

=1rem = 10 millisieverts

= | mrem = 10 microsieverts

=1 urem = 10 nanosieverts

ABSORBED DOSE

=1kGy = 100 krad

=1Gy =100 rad

=1 mGy =100 millirad

=1 uGy = 100 nanorad

=1 krad =10 grays

=1 rad = 10 milligrays

=1 mrad = 10 micrograys

=1 prad = 10 nanograys
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